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ABSTRACT

Digital filtering techniques have become significant methods for
data processing. This report presents the general theory through the
definition of a digital filter and also presents a class of digital
filters, called Martin-Graham filters, which are particularly well-
suited to the operation of data smoothing. Included in this class are
filters for non-real-time smoothing; smoothing and differentiation;
smoothing and interpolation; smoothing, differentiation, and inter-
polation; and smoothing and integration. Application of these filters
requires that the data be band-limited. In most cases, error bounds

are given. Sample programs and sample results are also included.
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PREFACE

On November 6, 196L, a project sponsored by the Computation
Laboratory of the Marshall Space Flight Center, Huntsville, Alabama,
was initiated with Northeast Louisiana State College to perform a
research study of numerical smoothing methods and numerical aspects
of finite difference methods. The research was supported in its
entirety by the National Aeronautics and Space Administration,
Huntsville, Alabama, under Contract No. NAS 8-11492 and was per-
formed by members of the Mathematics Department of Northeast Louisiana
State College. The Contract Technical Representatives were Mr. Ronald
J. Graham and Mr. David G. Aichele of the Computation Laboratory.

Mathematics Department members involved in the research during the term
of the contract were Dr. Edward B. Anders, Principal Investigator from
November 6, 1964 to September 1, 1966, Mr. James T. Taylo, Investigator,
November 6, 196L to September 1, 1966, and Principal Investigator,
September 1, 1966 to March 1, 1967; and for various pericds, Dr. Daniel
E. Durpee, Dr. Lonnie T. Bennett, Mr. James O'Neil, Dr. Dale R. Bedgood,
Mr. Stephen Hamm, and Mr. Kenneth R. Russell. Typing of the final report
was done by Mrs. Betty Stone and the proofreadiné was done by Mr. Russell
Rainbolt.

Two of the investigators on this contract were also involved in the
research performed under Contract No. NAS 8-11492 at Auburn University,
Auburn, Alabama. The final report on that contract, CR-136, was well-

received, and one project undertaken under NAS 8-11L92 was revision and



rewriting of that final report. The report presented here completes
that project, and also incorporates significant results obtained under
the present contract.

In writing this report, it was assumed that the reader is familiar
with Fourier series. A very readable presentation of the Fourier theory
can be found inf[l] .

The methods employed here in the applications assumes that the
transfer function of a filter is given analytically, and that it is
such that its inverse Fourier transform can be found. Cases do arise
where only values of the transfer function of a filter are knéwn at
equally spaced points on one-half the period of the filter. A method
for computing the corresponding filters weights is given in Appendix B.

In Appendix C, a method is given for détermining coefficients in
the Fourier series representation of a function. Application requires
that the series either be finite or the coefficients a, and bn be
negligible for large n, and that the samples of the function can be
obtained at the required points.

A reader interested only in the weight expressions and the

applications may go directly to Chapter IV.
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CHAPTER I

CLASSICAL FOURIER ANATYSIS

1.0 INTRODUCTION

We shall give here scme definitions and results from the classical
Fourier analysis. We shall not attempt to establish the Fourier inte-
gral theorem and we refer the reader to [1] for a proof with integra-
tion in the sense used here. The reader familiar with Lebesgue inte-
gration will find a proof in [2].

There are several different forms of the Fourier integral theorem.
The so-called complex form of the theorem states that if h{t) is a function

of the real variable t, then

h(t) = Jm ar JW n(x) e 2mif(x-t)y, (1.0)

provided h(t) satisfies one of the variety of sufficient conditions
(see Section 1.2 for two such conditions).

The results in this chapter are obtained again in the second
chapter in a more general setting. Many of the restrictions placed on
the functions in the classical theory are removed there. The duplica-
tion is intentional and serves two purposes. First, for the reader
not familiar with the Fourier transform,this chapter will serve as an
introduction. Secondly, if the reader is willing to accept a few
results from the second chapter, he can read this chapter and go
directly to the third chapter and the applications.

We shall use integration in the sense of Riemann and integration



will be over the entire real line. Furthermore, our functions can
have a finite number of points of discontinuity at which they may be
bounded or unbounded. Thus the integrals we encounter shall be

improper Riemann integrals of the so-called "third kind".

1.1 IMPROPER INTEGRALS AND ABSOLUTELY INTEGRABLE FUNCTIONS

Let h(t) be a function defined for all real t. We shall say that
h(t) is integrable if h(t) has at most a finite number of points of

discontinuity on the real line and the improper Riemann integral

jm n(t) as (1.1)

-

exists (finite). Thus if tistoseeens » b, are points of discontinuity

at which h(t) is unbounded, choosing a, < tl <a, <t, < az < t5 < ...

< t ’ . P
- <a, n<®ns then (1.1) is the limit

&y n t,-€ ai+l b
lim J h(t)dt + Zl j‘ 1 on(t)at + L n(t)at | + Jﬂ h(t)dt
b—3 | Ya i= e +E 5

€ S0 i i n+l

8 —>-

if this limit eXists, and we say that h(t) is integrable. The integral

(1.1) is usually said to be convergent or divergent according to whether

the above limit does or does not exist. Thus when we say that h(t)
is integrable, we simply mean that h(t) has at most a finite number
of points of discontinuity and the integral (1.1) is convergent.

Suppose that h(t) is continuous at to. Then from the inequality
“h(t)( - [h(to)” < In(s) - n(e )|

it follows that the function h(t) is continuous at to. The converse

is not always true. A simple example is the function



h(t) =

The function |h(t)| is continucus at t=0, but h(t) is not. Thus if a
function h{t) has at most a finite number of points of discontinuity,
then so does the function |h(t)|, but the converse is not true in
general.

We shall say that a function h(t) which has at most a finite num-

ber of points of discontinuity is absolutely integrable if the function

lh(t)l is integrable in the above sense, that is, the improper Riemann
integral
[e=]
j |n(t)] at (1.2)
-0
exists. The continuity of |h(t)| except at a finite number of points
follows from that of h(t). This is sometimes expressed by saying that

the integral (1.1) is absolutely convergent. Noting that

- |n(¢)] <h(t) < |n(e)]
and adding |h(t)l to each member, we have
0 < h(t) + |n(t)] < 2 |nt)| (1.3)

By (1.3) and the comparison test for integrals, the existence of.

(1.2) implies that the integral

Iw [n(t) + |n(t)]| ] at

exists. But then we have that

Jm [n(t) + |n(t)] 17 at - J‘m In(t)|at = J‘m h(t)dt

©
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and the integral (1.1) exists. This proves the following theorem.
Theorem 1.10 If h(t) is absolutely integrable, then h(t) is integrable.

The converse is not always true, for example, the function

sin t
t

h(t) =

is integrable, but it is not absolutely integrable.

Special forms of other theorems on improper integrals apply here
and we shall use them when needed. These theorems are found in most
advanced calculus texts. Some other results for improper integrals

' containing a parameter shall be needed and we list these for easy
reference. Proofs of these are usually found in advanced calculus
texts also.

Let h(t,B) be a function of t involving the parameter B and
suppose that h(t,B) is integrable with respect to t for Bl < BX<L 82,
that is, h(t,B) has at most a finite number of points of discontinuity
as a function of t and the improper integral

®
op) - | n(eplar (1.4)
-

exists for all B in|[ Bl’BZJ' The integral (1.4) is said to be uni-

formly convergent in [B B if for eachs, € > 0 there exists a number
1°72

N(€) > 0 such that

I o(p) - J:b h(t,B)dtl < €

a

for all a,b > N(€) and all B in [51,52]

Theorem 1.11 Weierstrass M test. If there exists a function M(t) >0

such that

(a) |n(t,p)] < M(t) for all t and all B in[ B,,B,]



[+<]
(b) J\ M(t)dt converges,
-0

then h(t,p) is absolutely integrable with respect to t and the integral

(1.h4) is uniformly convergent in[Bl’BE]'

Theorem 1.12 If h(t,B) is integrable with respect to t and continuous

es a function of B for p; < B < B, and if (1.4) is uniformly conver-

gent in [61,52 ], then

o(B) = JW h(t,p)dt

[= 9]

is a continuous function of B on[Bl,Be]. In particular,

plim, 5 0(B) = glim o L h(t,8)dt = f glim, o b(t,p)at.

O o]

Theorem 1.13 Under the conditions of Theorem 1.12, the function &(B)

is integrable (in the proper sense)on [ 61,52] and

B2 52 © @® B2
kL o(plap = J1 dp 'Jﬁ h(t,p)dt = Jﬂ dt J; h(t,B)as,
5 = -

1 1 1

that is, the order of integration may be interchanged.

Theorem 1.1l If h(t,B) is continuous as a function of the two variables

t and B, Bl'S p < 52, and is integrable with respect to t, and if

(a) égéfzﬁl exists and is continuous with respect to B,
o®

(b) jﬁ QE%E;EI dt exists and is uniformly convergent in
-0

[51,52] (and hence is continuous there)}, then the function



o(B)

o]
J7 h(t,B)dt is differentiable in [ BsB,] and

[=-]

o () = & [ meplar = [ 2ol

Um0 U= 00

1.2 THE FOURIER TRANSFORM

If the integral (1.0) exists, it can be written as

n(t) = j‘ ar t eEnift J‘ n(x) e-gﬁifxdx]
and letting

H(f) = J‘ n(t) e 2 ta (1.5)
we have

n(t) = Jﬁ H(r) 2 gr (1.6)

The function H(f) is called the Fourier transform of h(t). A

sufficient but not necessary condition for the existence of (1.5) is

that h(t) be absolutely integrable. To see this, we note that

-2nift -2nift
le =1, |n(t) e | = |n(t)]
. . . -2nift |
and h(t) absolutely integrable implies that h(t)e is absolutely

integrable. Hence h(t)e_2jtlft

is integrable for each f and (1.5)
exists. By Theorem 1.12, H(f) is continuous for all f. Also it can
be shown that H(f) converges to zero as lf| —> o (see [1] ). This

condition for the existence of (1.5) is sufficient but not necessary.

The validity of (1.0), and hence of (1.6), is a different



matter. These are valid if h(t) is absolutely integrable and also’
satisfies one of the following conditions:
(a) h(t) is of bounded variation on every finite interval.
(b} h(t) is piecewise smooth on every finite interval.
These conditions are sufficient but not necessary.

If (1.6) holds, then h(t) is called the inverse Fourier transform

of H(f). To denote that two functions are related by (1.5) and (1.6)
we write
h(t )e——>H(F)

‘The Fourier transform is the only type transform we shall use and no
confusion should arise if we drop the word "Fourier" and speak of the
"transform of h(t)" and the "inverse transform of H(f)".

If we interpret the variable t as time, then the variable f is
interpreted as frequency (cycles per second). Letting w = 2xf in

(1.5) and (1.6) yields the following form of the transform pair:

H(w) JW n(t) e Wlag

h(t) = (1/2x) Jﬁw'ﬁ(w) gy

@

where H(w) = H(f) and w = 2xf is angular frequency. This form of the

transform pair does not possess the symmetry of (1.5) and (1.6) due

to the constant (l/Zﬂ) appearing in the second expression. Symmetry
can be obtained by multiplying the first expression by (21)-% and tak-
ing a factor of (En)_% under the integral sign in the second, and then

e
replacing (2x) 2 H(w) by H(w) in both expressions. The forms {1.5)
and (1.6) suit our purposes best and shall be used. The exponents

*2n1ft are cumbersome and we shall use the notation



exp(x) = e” | ()

which will avoid some notation problems and is somewhat ‘more tractable.

1.3 SPECIAL FORMS OF THE FOURIER TRANSFORMS

In general, h(t) and H(f) may be complex. If h(t) is complex,
letting hl(t) and hg(t) denote its real and imaginary parts, we have
h{t) = hl(t) + 1h2(t)

Using exp(-2nift) = cos 2xft -isin 2nft, from (1.5) we obtain

o]
H(f) = Jﬁ [ hl(t) cos 2xft + hg(t) sin 2xft ] dt
-0
-1 Jﬁ [ hl(t) sin 2nft - h2(t) cos 2nft ] dt
- OO
Thus H(f) = Hl(f) + iH2(f) where
«©
Hl(f) = Jﬁ [hl(t) cos 2nft + h2(t) sin 2xft] dt
- OO0
- (1.8)
H2(f) = - J’ [ hl(t) sin 2nft - he(t) cos 2nft ] dt
-0
In a similar manner, we obtain
hl(t) = Jﬁ [ Hl(f) cos 2nft - H2(f) sin 2aft ] daf
- 00
- (1.9)
h2(t) = Jﬁ [ Hl(f) sin 2xft + H2(f) cos 2nft | af
-
If h(t) is real, then h2(t) = 0 and hl(t) = h(t). Then the
expressions (1.8) reduce to
Hl(f) = J’ h(t) cos 2xft dt (1.10a)



=

@

H2(f) = - Jim h(t) sin 2xft dt ' (1.10b)

Replacing f by -f in (1.10a) and (1.10b) we see that
Hl(-f) = Hl(f) and H2(-f) = -Hz(f) (1.11)
Therefore Hl(f) is an even function of f and H2(f) is an odd function
of f. Then
H(-f) = Hl(—f) + 1H2(—f) = Hl(f) - 1H2(f)
and hence
H(-f) = H*(F) (1.12)
Conversely, if H(-f) = H¥(f), then
Hl(f) - 1H2(f) = Hl(-f) + 1H2(-f)

and equating the real and imaginary parts we see that Hl(f) is even
and H2(f) is odd. Then the integrand in the first integral of (1.9)
is even and the integrand in the second is odd. Hence h2(t) = 0 and

h(t) is real. Furthermore,

h(t) = 2 J‘w [Hl(f) cos 2nft - H2(f) sin 2rxft | 4af (1.13)
0

A special case which we shall encounter later is when H(f) is
real and even. Then (1.12) holds and putting He(f) = 0 in (1.13) we

cbtain

h(t) = 2 Lw H(f) cos 2nft af (1.1L)

Ancther special case is when H(f) is purely imaginary and odd.



Then H(f) = iH2(f), H(-f) = -H(f) = -in(f) = H*(f) and (1.12) holds.

Putting Hl(f) = 0 and iH(f) = i2H2(f) = -H2(f) in (1.13) we obtain

h(t) = 21 J;m H(f) sin 2xft af (1.15)

If h(t) is purely imaginary, then h(t) = ih2(t) and

Hl(f) = Ji: hg(t) sin 2xft dt
(1.16)
H2(f) = Ji: hz(t) cos 2xft at
Thus Hl(f) is odd and Hg(f) is even and
H(-T) = Hl(-f) + iH2(-f) = -Hl(f) + iH2(f) = -3*(f) (1.17)

It is easy to show that the converse is true, that is, if H(f) is such

that H(-f) = -H*(f), then h(t) is purely imaginary.

1.y SOME SIMPLE THEQREMS

We present here some simple theorems from the classical theory.
These theorems will be restated in the second chapter in a more gen-
eral setting and proved with less restrictive conditions.

The following theorem is an immediate consequence of the linear-
ity of integration.

Linearity Theorem. If h(t) €<—> H(f), g(t) <—> G(f) and if a,b are

arbitrary constants, then

ah(t) + bg(t) «—> aH(f) + bG(f) (1.18)

Symmetry Theorem. If h(t) €«—> H(f), then

10



H(t ) €«—>h(-7F) (1.19)
Proof: We have
() = Jm n(t) exp(-2mift)dt

Replacing £ by t and t by -f gives

1

H(t) Jﬁ-w h(-f) exp (-2xit(~f))(-df)

J\w h(-f) exp(2nift)df

Scaling Theorem. If h(t)<«—>H(f) and a is any non-zero real constant,

then
n(at)e—s H(E/a) (1.20)

|#

Proof: We have

H(F) = wa h(t) exp(-2xift)dt

@
and replacing f by (f/a) gives

H(f/a)

Jﬁm h(t) exp(-2rift/a)dt

@

Now let t = ax. Then dt = adx and if a > O,

H(f/a)

[os]
a J1 h(ax) exp(-2xifx)dx
- OO

If a < O, then the order of the integration is reversed and

H(f/a) = a J;-m h(ax) exp(-2nifx)dx

[ee)
-a J‘ h(ax) exp(-2rifx)dx
-

11



Hence, for any a'# O,

H(£/a) = |al J’m h(ax) exp(-2rifx)dx

Replacing x by t and dividing both sides by Ial completes the proof.

First Shifting Theorem. If h(t)€«—>H(f) and t, is a real constant,

then
h(t - t ) €<—> H(£) exp(-2nit f) (1.21)
Proof: We have

h(t) = qu H(f) exp(2xift)df

w0
and replacing t by t - to gives

h(t - to)

r H(s) exp(2xif(t - t_))ae

@
Jﬁ [H(f)exp(-Eﬁitof) lexp(2xift)arf
-0
which proves the theorem.

The following theorem is proved in a similar manner.

Second Shifting Theorem. If h{(t)<—H(Ff) and £ is a real constant,

then

n(t)exp(2nif t)<—>H(£ - £ ) (1.22)

From (1.20), (1.21), and (1.22), we obtain

n(at)exp(2nif t)e—> |i| B(ES Lo) (1.23)

h(at - to)<————> TéT'H(é)exp(-Znitof/a) (1.24)

12




Also, letting a = =1 in (1.20) gives
h(-t)e—>H(-f) (1.25)

First Differentiation Theorem. If h(t) is continuous and t'h(t) is

absolutely integrable, then
(Zﬂit)kh(t)<%————>H(k)(f) _ (1.26)

for k=0,1,2, . . ., n. [ H(O)(f)EEZH(f)]

Proof: Let
A = max |(2ﬂ)nh(t)|
lt] <1
and let
A |t <1
M(t) =
|(2nt)™n(t)|  |t| > 1

By the continuity of h(t) on [ 1,-1 ], A is finite and t"n(t) is abso-

lutely integrable by hypothesis. Thus the integral

Ji: M(t)dt

converges. Furthermore, for k =0, 1, 2,...., n,
l(-Eﬂit)kh(t)exp(-2nift)| = |(-2nit)kh(t)|.5 M(t)

for all t and all f. By the Weierstrass M test, the integral

Hk(f) = qu (Enit)kh(t)exp(-Znift)dt | (1.27)

<«

exists and is uniformly convergent in f, k =0, 1, 2,...., n.

The integrand in (1.27) satisfies the conditions of Theorem 1.1L

13
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&
g

for k =0, 1, 2,...., n-1, and hence

B, (£) = Hl(il)(f)

%?' j:m ('2ﬁit)kh(t)§Xp(-2ﬁift)dt

o]

« k+1 '
J1 (=27it)” "n(t)exp(-2nift)dt

For k

0, Ho(f) = H(f) = H(O)(f), and hence Hl(f).= H(l)(f),

Hl(l)(f) IS Y , B (£) = w5 ey ... , H (£) = w8 gy,

H2(f)
Finally, by the continuity and-absolute integrability of
(Eﬁit)kh(t) and the Fourier integral theorem, the inversion formula

holds for ¥k =0, 1, 2,..... 5 N

Second Differentiation Theorem. If h(t)€«——>H(f) and

(1) n(t) is continuous and converges to zero as |t| —> =, and

(2) h(l)(t) is absolutely integrable, then

(2nif)H(T) = qu 0(1) (4 )exp(-2rift)at (1.28)

Proof: We have

H(f) = qu h{t)exp(-2xift)dt

Integrating by parts with
u = h(t) dv = exp(-2nift)dt

du = h(l)(t)dt v —(Eﬂif)—lexp(-Eﬂift)

we obtain

[oo]

H(f) = (Enif)-l [ -h(t)exp(-2xift) l + Jﬂm h(l)(t)exp(-Enift)dt]

-0

14



and since h(t) —> 0 as |t\———+> », the first term in the brackets is

zero. Multiplying both sides by (2xif), we obtain (1.28).
If h(l)(t) and h(e)(t) satisfy the conditions of the theorem,

then integration by parts again yields

oo}

(2xif)%H(T) = J’ () (4 )exp(-2nift)at

-0

Continuing in this manner, if h(n)(t) and h(n+l)(t) satisfy the con-

ditions of the theorem, we cbtain

(2rif) ™ lu(r) = Jﬁw 021 () exp(-2rift )dt

-0
Then for k < n, h(k)(t) satisfies conditions sufficient for the

inversion formula to hold, and we obtain

h(k)(t)<+————>(2nif)kﬂ(f)

Conjugate Function Theorem. If h(t)€«——>H(f), then

h*(t )e——->H*(-T)
Proof: With h(t) = hl(t) + ih2(t), we have
H(f) = j‘m[ hl(t) + ihz(t) ] exp(-2nift)dt
and with H(f) = Hl(f) + in(f) and equations (1.8)

o]
H*¥(f) = Jﬁ [hl(t)cos 2nft + hg(t)sin 2nft ] dt
-0

[»o]
+ i Jﬁ [ hl(t)sin 2nft - h2(t)c052ﬂft] dt

15
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(1.30)



Jim [hl(t) - ihg(t)]'[ cos 2xft + i sin 2rft ] dt

@©

Jﬁm h*(t) exp(2xift)dt

[oo]

Replacing f by -f shows that H¥(-f) is the transform of h¥*(t). The
validity of the inversion formula can be verified similarly, starting

with

h(t) = Jﬂm H(F) exp(2nift) df

1.5 The Convolution Theorems.

Second only to the transform and inverse transform, the convolu-
tion theorems are the most powerful tools in Fourier ahalysis. These
theorems in their generalized form play a central role in filter
theory.

Let g(t) and h(t) be functions of a real variable t, and let

a(t) = j g()n(t - x)ax (1.31)

If this integral exists, then q(t) is called the convolution of g(t)
and h{t). This is usually denoted by writing g(t) = (g¢h)(t). By letting
z =t -~ x in (1.31) it is easy to show that the convolution is commu-

tative, that is, -

(gxh)(t) = (hxg)(t) (1.32)

Also, from the linearity property of integration, it follows that

(g% [h+h, ] )(¢) = (gxh; + gxh,) (%) (1.33)

The following theorem is valid when g(t) and h(t) are absolutely

16



integrable. The proof is not difficult, but it is long and will not

be given here.

Time Domain Convolution Theorem. If h(t) and g(t) are absolutely

integrable and H(f) and G(f) are their Fourier transforms, then the
convolution g(t) = (gxh)(t) is also absolutely integrable. Further-
more, Q(f) = G(£)H(T).

Under the conditions of the theorem, a change in the order of
integration is Jjustified in

jm dt [exp(-Enift) Jm g(x)h(t-x)dx]

o]

Q(f)

Hence

2
=Y
I

Ji: dx I:g(x) Ji: n(t-x)exp(-2xift)dt :l

Using (1.21) we cbtain

£
H
1l

Jﬁw g(x)[H(f)exp(-2xrifx)]dx

H(T) jm g(t)exp(-2nift)dt

A(£)G(£)

The conditions of the above theorem are sufficient but not
hecessary. If, in addition to the conditions of the theorem, q(t)
is bounded on every finite interval, the inversion formula holds and

we have

(g#h)(t)€—>G(£)H(f)

17



If(1.34) holds, the following theorem follows from the symmetry

property (1.19).

Frequency Domain Convolution Theorem. If g(t)€—=G(f) and

h(t)e—>3H(f), then

g(t)h(t)e—>(G*H) (1) (1.25)

Parseval's Formula. If (1.35) holds, then

ng(t)h(t)d,t = Jm G(f)H(-r)ar (1.36)

@ [se]
Proof. From (1.35) we have

(G*H)(F) = Jm G(x)H{f-x)dx = JW g(t)h(t)exp(-2nift)dt

[e] x©

and {(1.36) follows by letting f = O and replacing x by f in the first
integral.
Note that if h(t) is real, then by (1.12) we have H(-f) = H*(f)

which gives

Jm g(t)h(t)at = r G(£)E*(£)ar

[oo] @

Letting g(t) = h*(t), from (1.30), G(f)=H{-f) and we have

jw |h(t)l2dt = Jm H*(-f)H(-f)df = on |H(f)|2df (1.37)

o o2
If we write H(f) in polar form,

H(f) = A(f)exp(i6(f)) (1.38)

18



then the real function A(f) is called the Fourier spectrum of h(t),

A2(f) is called the energy spectrum of h(t), and 6(f) its phase angle.

2
From (1.38) we have |H(f)| = A2(f), and thus (1.37) can be written

as

Jm |n(t)|%at = 'Jﬂw A%(g)ar (1.39)

[o:} [=-]
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CHAPTER II

 GENERALIZED FUNCTIONS AND THEIR FOURIER TRANSFORMS

2.0 INTRODUCTION

Several approaches to the definition of a digital filter are
possible. In the choice of approach, one is influenced by purpose
and background. The approach we choose here requires the Dirac delta
function and some of its properties. This is not proposed to be the
shortest or easiest way of arriving at the definition of a digital
filter, but it is proposed as one of the clearest and most meaningful
approaches.

The Dirac delta function 8(t) is often defined by one of the
following statements:

(A) If g(t) is a continuous function at t = to, then 6(t)

has the property that

[ e ster e = ere )

(B) &(t) =0 if t £ 0, and

[2]

Jﬁ §(t) dat = 1;

-0

(c) s(t) = Ln gn(t) where {gn(t)} is a sequence of
functions satisfying the conditions

(i) if t # 0, then S gn(t) = 0, and

(ii) J’w gn(t)dt = 1.
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These definitions are meaningless if we attempt to think of &(t) as
a function in the ordinary sense. By introducing the delta function
as a new concept, a geﬁeralized function, (A) éan be given a precise
meaning, but definitions (B) and (C) do not uniquely describe 8(t).
There is no shortage of theories to justify (A). One particu-
larly suited to our purposes is given by Lighthill [3]. The develop-
ment is similar to Cantor's extension of the rational numbers to the
real numbers, an analogy we shall return to after making a definition

and some commentls.

Definition 2.00 A function g(t) of the real variable t is called a

test function if

(i) g(t) is everywhere differentiable any number
of times, and
{ii) g{t) and all of its derivatives are O(lt\_N)
as ltl—————> o for all integers N.
As a reminder, the "big O" notation, g(t) = O0(h(t)) as t—> a,

means that there exists a positive constant A gich that

le(t)]| < Aln(t)| as t—> a.

We shall denote the set of all test functions by S. Each g(t) in
5 is a function of the real variable t, but these functions may be
complex-valued. Note that the function g(t) = O is in S, and S is non-
empty. A non-trivial example of a function of S is g(t) = e_t . Ve
note that Lighthill calls the functions of S "good functions" but the

terminology we have adopted is more commonly used. Some other minor

changes in terminology will be made.
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Cantor extended the rationals to the reals by using equivalence
classes of Cauchy sequences of rational numbers. The set analcogous to
the rationals in Lighthill's development is the set S of test functions.
Cantor's scheme was as follows: Let R denote the set of rational num-

bers and let
¢ =1 [rn] l {rn] is a Cauchy sequence of rationals) .

Define a relation on C as follows: If {rn} and{sn] are elements of C,
then {rn}a-i{sn} if and only if Lm (rn-sn) = 0. That is, the
sequence of rational numbers {rn-sn] must be null. It is easy to show
that sme is an equivalence relation and hence partitions C into dis-

joint subclasses, called equivalence classes. Let

R={(r | r is an equivalence class determined by mw },

then the elements of R are called real numbers, and R is called the set
of real numbers. If r and s are real numbers, thelr sum and product
are defined as follows: Let {rn} be a sequence of r and {sn} be a
sequence of s. Then r+s is the subclass of C containing {rn+sn} and
rs is the subclass of C containing {rnsn], Of course, it is necessary
to show that (rn+sn] and {rnsn} are Cauchy and that r+s and rs are
uniquely determined, that is, if {ré} and {sé} are in r and s, then
the subclasses determined by {ré+sé} and-{résﬁ} are the same as those
determined by {rn+sn} and frnsn}. The various field axioms are veri-

fied next. Finally, the mapping T defined on R by writing

T(a) = {a,2,8,44.2,8,....} =2 in R, a in R,

embeds R in R.
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An outline of Lighthill's construction of the set of generalized
functions from the set S of test functions is as follows (new terms are

defined later): With S the set of all test functions, let
¢ ={ [gn(t)] | {gn(t)} is a regular sequence of test functions}

Introduce an equivalence relation amw on C by writing {gn(t)} ~ Ihn(t)}
if and only if
(o]

LHm Ji gn(t)H(t)dt = lm Ji: hn(t)H(t)dt

[= <]

for all H(t) in S. Let S be the set whose elements are the equivalence

classes determined by the relation sme . An element of S is called a
generalized function. Let g and h be generalized functions and let
[gn(t)} be a sequence of g and {hn(t)} be a sequence of h. Define the
sum g+h to be the generalized function (subclass of C) determined by
the sequence {(gn+hn)(t)], where (gn+hn)(t) = gn(t) + hn(t) for all t.
For any complex number a, define ag to be the generalized function
determined by {(agh)(t)}, where (agn)(t) = agn(t) for all t. Show
that these definitions are consistent, that is, show that each sequence
above is regular and that the definition is independent of the choice
of [gn(t)} in g and {hn(t)} in h. Next, show that § with this sum and
product of a complex number and a generalized function is a linear
(vector) space. Finally, embed S in S.

An alternate approach is found in functional analysis. There, a
generalized function F is a continuous linear functional on the linear
space S of test functions, that is, F is a mapping of S into the complex
numbers such that

F(ag+bh) = aF(g) + bF(h)

23



for ali g,h in S and all compiex numbers a and b. Of course, the use
of the word continuous implies that either a topology is eiplicitly
given on S or that convergence in some sense is defined there.

As indicated, we will not use the last approach. However, some
notation and terminology from this approach will be helpful in inter-

preting some definitions and results.

2.1 THE TEST SPACE S

Let V be a set with an operation{+) called addition defined on
it and let R be a field (usually the real or complex numbers). V is

called a linear space over R if

(i) V is a commutative group with respect to +,

(ii) for each a in R and each x in V a product ax
is defined such that ax is in V and for all
a,b in R and all x,y in V, |
a) a(bx) = (ab)x
b) a(x+y) = ax + ay
ce) (a+b)x = ax + bx
d) 1x = x where 1 is the multiplicative

identity of R.
| A linear space over R is often called a vector space over R. The
elements of R are called scalars and the operation ax is usually called

scalar multiplication. The classical example of a linear space is

n-dimensional Euclidean space.
The set S of all test functions is & linear space with respect to

addition and scalar multiplication defined by
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L)

g(t) + h(t)

ag(t)

(g+n)(t)
(ag)(t)

and S is called a test space.

]

The functions of S are very "well-behaved" as is impliéd by
Lighthill's terminology "good functions". Some of the "good"™ proper-
ties of these functions are

(i) they are everywhere continuous on the real line,

(ii) they are absolutely integrable on the real line,

(iii) they are of bounded variation on every finite interval,

(iv)  they are square integrable.
In fact, each g in S satisfies conditions sufficient for the existence
of its Fourier transform and for the inversion formula to hold. Every
result and theorem of Chapter I applies to functions of S since in
each case these functions satisfy sufficient conditions. Thus we can
apply the results of Chapter I to test functions without restrictions
of any sort.

It is convenient to adopt a notation to denote the operation of
taking the transform and inverse transform of a function. For a test
function, g, we shall see later that the transform and inverse transform
of g are both in S, and hence the operations of taking transforms and
inverse transforms can be thought of as mappings of S into S. We let

F denote the operation of taking the transform,

Flg) = Jﬁw g(t)exp(-2xift)dt

[oe]

and let F"1 denote the operation of taking the inverse transform,
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F_}(g) = Jﬁm g(£)exp(2xift)df.

We shall use the symbol "f" to denote a real variable called frequency,
and this symbol shall not be used to denote a function. The functions of
S may be thought of as functions of f, or of t, the symbol used for the
real variable being immaterial.

If g(t) is a function such that g(t)h(t) is in S for all h{t) in
S, then g(t) is called a multiplier on S. Clearly, every constant
function is a multiplier on S.

Iet M denocte the set of all functions m(t) which are everywhere
differentiable any number of times and such that m(t) and all of its
derivatives are O(|t|NO) as lt‘————><n for some integer Ny. We show
that every function of M is a multiplier on S.

Theorem 2.10 If m(t) is in M and h(t) is in S, then m(t)h(t) is in S.

Proof: We have

_@Gn()n(e)) _ S (my (3 (e
atP j=0

It suffices to show each term in the right side is in S. From the
definition of M, we have that there exist numbers A > 0, K > 0, and

an integer N such that
| m(J)(t) | <a]6|Y for a1l t such that |t| > K.

From the definition of S, we have that if N' is any integer, then there

exist numbers A' > 0, XK' > O such that
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P (e)| < arfe]™ for a1l t such that |t] > K.

Then for all t such that ltl > max {K,K']},

But N-N' is arbitrary because N' is arbitrary. Thus m(t)h(t) is in S.
Note that if a function is contained in one of the sets M or-S,
then every derivative of that function is contained in the same: set.
Thus, if m(t) is in M and h(t) is in 8, then m(j)(t)h(k)(t) is in S for
all integers j,k > O. A femiliar class of functions contained in M is
the set of all polynomials.
The following theorem lists some of the properties which the
functions of S possess.
Theorem 2.11 If h(t) is in S, then
(i) PF(h) = H(F) is in S

(ii) F’l(h) = g(t) is in S

(iii) h(-t) is in S

(iv) h*(t) is in S

(v) h(at+b) is in S, a,b, constants, a # O.
Proof: For part (i), note that the conditions of Theorem 1.1l are
satisfied by
)
H(f) = J1 h(t)exp(-2rift)dt
)

and each of the derivatives H(p)(f). Also, we may integrate by parts

repeatedly. Differentiating p times and integrating by parts n times,

we have

27



|H(p)(-f)| = |(2:rif)-n J‘m c—lil-r-l{(;'zatit.)ph(t)} exp(-2nift)at|
- dt )

P-n -] dn
< lam” J\ | =—(t®Pu(t)} | at
- n n

| £ -o At
Now tph(t) is in S by Theorem 2.10, and hence the nth derivative of
tph(t) is in S. Thus the integral on the right side above exists and

is finite, and we have
: wion
1P (r) = o(|7]™).

Part (ii) is proved by replacing exp(-2nift) by exp(2rift) and inter-
changing the roles of f and t in the proof of (i).
For part (iii), if we let h(t)€— -*H(f), then by (i), both H(f) =

F(h) and the function

F(H) = j‘m H(f)exp(-2nift)df = h(-t)

are in S (see(1.19)).

For part (iv), we have that h(t) is everywhere differentiable any
number of times, and it is obvious that h*(t), the complex conjugate of
h(t), also has this property. To complete this part, all we need do
is note that \h(n)(t)l = \h*(n)(t)l for all a > O.

To show the last part, let m be a non-negative integer and N be
any positive integer. Then there exist numbers Am > 0, Km > 0 such

that for all t such that |t| > K,

|h(m)(t)l < Am\t\'N .
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Letting g(t) = h(at+b), we have g(t) differentiable any number of times

and for all t such that |at+b| > K ,
6™ (0)] = [2" (atem))|
< |a|mAm|at+b|'N
= |a|m'NAm|t-+ (b/a)| ¥

Note that it suffices to show that |t +(b/a)|™* = o(|t|™!). To do tnis,
let ¢ = b/a and choose -t such that |t| > 2|c|. Then |c/t| < 1/2, and
-1/2 < ¢/t < 1/2. Adding 1 to each menmber of this inequality gives

1/2 <1 + ¢/t < 3/2, or taking reciprocals, 2/3 < 1/(1+c/t) < 2. Thus

1
|l + c7t| <2,

and hence

| t

t + c‘ <2,

1

|t+c|<m:

or |t + cl'l < 2|t|'l, and hence [t + c| ™ < Mt ™ for |t]| > 2|¢].

Finally, for all t such that |t| > 2|c| and |at+b| > K , we have
-N -N _ _N|_m-N -N
|g(m)(t)| < le|™ Alt+cl™ <2 la|™ A |67,
which completes the proof.

2.2 GENERALIZED FUNCTIONS

We now define the class of sequences of functions of S which play
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a role in the construction of generalized functions similar to that of
the Cauchy sequences of rational numbers in the construction of the

real numbers.

Definition 2.20 A sequence {gn(t)} of test functions is called regular
if the limit
=]
Lm Jﬁ gn(t)G(t)dt (2.00)
-0
exists and is finite for all test functions G(t) in S.
We denote by C the class of all regular sequences and note that C

is not empty since

n

J‘m pim {exp(-tg/ng)]G(t)dt

o<}

Jﬁm G(t)dt

and hence the segquence {exp(-te/ne)} is regular.

Limg qu exp(—tz/nz)G(t)dt

-0

(2.01)

Definition 2.21 A sequence {hn(t)) in C is said to be equivalent to

the sequence {gn(t)] in C, denoted by writing {hn(t)} o~ {gn(t)}, if
and only if
-]

Lm Ji hn(t)G(t)dt = limg Jim gn(t)G(t)dt

-+

for every G(t) in S.
The limits and the integrals in the above definition exist, so we

could rewrite the condition for equivalence as
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for every G(t) in 8. This resembles the null condition taken in the
construction of the reals.
The relation e is clearly an equivalence relation, that is; we

have

(i) {hn(t)] o~ {hn(t)} for all regular sequencés,
(11) if (h (t)) mw (g (t)}, then (g (t)} mw (b (t)],
(ii1) if {h (t)} = (g (t)} and {gn(t)] m (k (%)}, then

(0 (t)} m (x (t)].

Thus swe partitions C into disjoint subclasses, the equivalence classes
determined by mmge . We let 'S denote the collection of all the sub-

classes of C determined by g .

Definition 2.22 An element s of S is called a generalized function.

Thus a generalized function is a class of equivalent regular
sequences, that is, if {sn(t)} is regular, then the class s of all

regular sequences equivalent to {sn(t)} is a generalized function. A

seqguence {sn(t)} in the class s is called a representative of the
generalized function s.

Note that if s is a generalized function, then the 1limit,
w
LU jw sn(t)G(t)dt,

is a complex number whose value is independent of the choice of repre-

sentative {sn(t)} of s. However, the limit does vary with G(t) in S.
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This leads us to make the following definition.

Definition 2.23 Let s be a generalized function and let {sn(t)} be a

representative of s. Then for each G{t) in S, we define

5(¢) = lim Jw s_(£)6(¢)at | (2.02)

We now see that a generalized function s can be thought of as a
mapping of the set S into the complex numbers (see Figure 2.1). We
shall use this interpretation gnd the mapping notation in preference
to the "integral" notation used by Lighthill, the latter being somewhat

confusing at times.

FIGURE 2.1

As an example, let I denote the generalized function with repre-=

2
sentative {exp(-te/n )}, then from (2.01) and above we have that

1(a) = r a(t)dt,

@0

and hence I is a mapping which maps each G(t) in S onto its integral

over the interval (-o,w).
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Lét r and s_be generalized functions and let {rn(t)] and {sn(t)]
be representatives of r and s, respectively. Thinking of r and s as
sets, to say that r and s are equal means that r and s are the same
subclass of C. Hence the representatives of these generaliied functions
must be equivalent because they belong to the same class, and we have
that for every G(t) in S,
©

o Jﬂ rn(t)G(t)dt

[=]

r(g)

n%ig> - j:m sn(t)G(t)dt
= s(G)

But this is the familiar reguirement for writing r = s where r and s
are interpreted as mappings of S into the complex numbers. Hence it
is clear that if r and s are generalized functions, then r = s if and

only if r{(G) = s(G) for every G(t) in S.

Definition 2.2 ILet r and s be generalized functiows and let {rn(t)}

and {sn(t)] be representatives of r and s, respectively.

(i) The sum of the generalized functions r and s, denoted
by r+s, is defined to be the generalized function with
representative {rn(t) + sn(t)];

(ii) The derivative of the generalized function r, denoted
by r', is defined to be the generalized function with

1]
representative [rn(t)};
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(iii) T,y is defined to be the generalized function with

, ;
representative {rn(at+b)};

(iv) For each m(t) in M, the product mr is defined to be the

generalized function with representative {m(t)rn(t)};

(v) The Fourier transform Fr of the generalized function

r is defined to be the generalized function with repre-

sentative {F(rn)}. The inverse Fourier transform F iz
is defined to be the generalized function with repre-
sentative {F_l(rn)}.
We must show that these definitions are consistent, that is, we
must show that each one uniquely determines a generalized function.
To do this, we show that
(a) each sequence named is a sequence of test Ffunctions,
(b) each sequence named is regular and hence defines a
generalized function, and
(c) that the definitions are independent of the choice
of representatives of r and s, that is, the generalized
functions defined are unique.
Part (a) follows from previous remarks and Theorems 2.10 and 2.11. We-
now verify (b) and (c) for each part of the definition.
Part (i) Let G(t) be in S. Then
)

-nl_j£1> ) J: {rn(t)+sn(t)}G(t)d‘b

(=]

o

L HI £ {rn(t)G(t)+sn(t)G(t)]dt

[os]

= lim [fm rn(t)G(t)dt + jw sn(t)G(t)d‘:
o o 2
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[e -]

= lim L» rn(t)G(t)dt
| (2.03)
©
+ lim L, s (£)a(t)at
Now each limit in the last line on the right exists and is independent
of the.choice of representative of r and s. Hence the limit on the
left side exists and is independent of the choice of representatives

{rn(t)} and {sn(t)}. This verdifies (b) and (c).

In terms of the notation (2.02), (2.03) yields

(r+s)(G) = v(G) + s(G)
for all G(t) in S. Thus r+s is just the sum of the mappings r and s.
1
Part (ii) With U = G(t) and aV = rn(t)dt, integrating by parts one

time, we have

[oe]

ro rrll(t)G(t)dt rn(t)G(t) - Jm rn(t)G(t)dt (2.0L)

-0

- Jw rn(t)G'(t)dt

Letting n—> « in both sides, since {rn(t)] is regular and G'(%) is in
S, the 1limit in the right side exists and is independent of the repre-
sentative [rn(t)] of r. Thus the left side has the same properties.

In our adopted notation, letting n—>> o in (2.0l) yields
r'(G) = -r(G") (2.05)

for all G(t) in S.
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Part (iii) By making a change of variable, we have for each rﬁ(t),
® ®
Jﬁ r (at+b)6(t)at = |ai'l Jﬁ rn(t)G((t-b)/a)dt (2.06)
- -0
By (v) of Theorem 2.11, G({(t-b)/a) is in S. Since {rn(t)} is regular,
the limit as n——> « of the right side exists and is independent of the
choice of the representative of r. Therefore, the left side also has
these properties.
Letting E(t)-= G((t-b)/a) and taking the limit in both sides of

(2.06) yields

r, ,(G) = r(G) (2.07)
for all G(t) in S.
Part (iv) This part follows easily from

J\m [m(t)rn(t)]G(t)dt = J\m rn(t){m(t)G(t)}dt, (2.08)

@ =]

noting that {rn(t)J is regular, m(t)G(t) is in S, and letting n—> =
in both sides. In the mapping notation, we have that for every G(t)

in S,

or(G) = r(m-G) (2.09)

where m-G is the ordinary function (m-G)(t) = m(t)G(t).
Part (v) Recall that for ordinary functions if h(t)<€—>H(f) and
g(t)€e—>G(f), then by (1.19), H(t)€e——>h(-f); by (1.25),

h(~t)€——>H(-f); and by Parseval's formula (1.36),
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J‘m g(t)n(t)at = JW G(f)H(-T)ar.
-0 -0
Using (1.19) and (1.25), several different forms of Parseval's formula
are obtained. One form of interest to us here is
o o .
j g(t)h(-t)at = I G(L)H(f)dF. (2.10)
o )
In what follows, we shall not assume a fixed role for the variables
f and t as has been previously taken. We have to this point written
the transform as a function of f and the inverse tfansform as a function
of t. However, the roles of f and t are interchangeable in (1.5) and
(1.6). That is, whether we have the transform or the inverse transform
is determined by the sign of the exponent in the integrals of (1.5) and
(1.6), not on the manner in which the variables are denoted.
Parseval's formula is valid for test functions, and hence if H(F)
is in S and h(t)<€<——>H(f), then h(t) is in S and from (2.10) we have

Jm F(rn)H(f)df= jm rn(t)h(-t)dt (2.11)

[ee]

By interchanging the roles of f and t in (1.19) and using (iii) of
Theorem 2.11, we have h(-t) = F(H) is in S. The sequence {rn(t)] is
regular, so the limit as n—> o in the right side of (2.11) exists and
is independent of the representative of r. Hence the limit of the left

side exist and is independent of the representative of r. 1In the map-

ping notation, this yields

Fr(H) = Ll Im F(rn)H(f)df
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o]

S N J: rn(t)h(—t)dt

@

(2.12)

IR N jﬁm rn(t)F(H)dt

11

I‘(F(H)),

that is, the image of H under Fr is the same as the image of F(H) under
the mapping determined by r.

For the second part, we consider the functions of the represent-
ative sequence of r as functions of the variable f. Then F-l(rn) is a
function of t for each n, and by Parseval's formula,

qu F'l(rn)h(t)dt = qu rn(f)H(-f)df (2.13)

foe] @

For each h(t) in S, H(f) = F(h) is in S. Thus so is H(-f), and letting
n—-> o in both sides of (2.13) shows that F—lr is a uniquely determined
generalized function.

Now, by (1.25), H(-f) = F(h(-t)), and by making a change in the
X

variables in (1.5), we find that F(h(-t)) = F “(h). In the mapping

notation, this yields that for all h(t) in S,

F r(h)

REL Jim F'l(rn)h(t)dt

S EERU N COL S
. ' (2.1h)
- 11 jﬁ rn(f)F'l(h)df

n ©
«©

= r(FHn)).
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This gives an interpretation of F-lr similar to the one for Fr above.
Applying FLto (2.13), applying F to (2.1h),and noting that
F(FY(H)) = B = F X(F(H)) for all E in S, we have that for each r in

B,

F1Fr(E)

FF~ T r(H)

Fir(P(H)) = r(F-HFE))) = r(H);

Fr(F(H)) = r(F(F"H(H))) = r(H).

Thus we see that if F is thought of as a mapping of S into itself, then

F 1 is the inverse mapping of F, that is,

FFl -1, =F1F
5
where Iy is defined by Is(r) =r for all r in S.
We have already noted that every constant function m(t) = a is in
M and thus if r is a generalized function, by Definition 2.2L, part
(iv), a-r is a generalized function. In part (i) of the same defini-

tion, a sum is defined on 8. It is easy to verify the following

theorem.

Theorem 2.20 The set S of all generalized functions with addition as
defined in (i) of Definition 2.2L and with scalar multiplication
defined by letting m(t) = a in (iv) of Definition 2.2l is a linear
space over the complex numbers.

We have already noted that each generalized function in S deter-
mines a mapping of the space S of all test functions into the complex
numbers. Such a mapping is usually called a functional. We now show
that these functionals are linear.

Let r be in S and let {rn(t)] be a representative of r. Then if
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G(t) and H(t) are elements of S, and a,b are complex numbers, we have

r(aG+bH) = lim qu rn(t){aG(t)+bH(t)}dt.

[~

a- n]_.i_rrg - J_m rn(t)G(t)dt +be lim f rn(t)H(t)dt

-0

a+-r(G) + b-r(H)

Hence the mapping determined by r is a linear functional on S.
Note that by reapplying part (ii) of Definition 2.2L to the

derivativer' of r, we obtain r" = (r')'; the second derivative of the

generalized functiop r (note that the proof of consistency is valid
with rn(t) and ré(t) replaced by ré(t) and rg(t), respectively). In
fact, since each function of the sequence {rn(t)} representing r is
differentiable any number of times, we may reapply part (ii) and its
proof of consistency any number of times. Thus, by induction, the kth
derivative of a generalized function is defined, and we see that every
generalized function has derivatives of all orders. We denote the kth
derivative of r by the symbol r(k).

We have shown that every generalized function r has a Fourier
transform s = Fr. Applying FL 4o both sides, we have Fls = FiFr =

Is(r) = r, and the generalized functions r and s form a transform pair.

In the notation of the first chapter, we have r€———>s.

Theorem 2.21 Let r be a generalized function and let s be its Fourier

transform, that is, r<——>s. Then
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i

(1) sé-———ar_l,o

.. -1 .
(ii) ra,b<%——-—>|a] exp(2n;bf/a)sl/a,o

(111) re——s(orir)¥s, Kk = 1,2,3,u0..-

(iv) (2nit)re—ss(E) ko 1,2,3,......

Proof: We shall prove part (iv). The proofs of the other parts are
done in a similar manner.
Let {rn(t)} be a representative of r. Then by part (v) of Defi-

nition 2.2h, {sn(f)] where

s = F(rn) s, 0= 1,2,3,.00...

is a representative of the generalized function s. Each sn(f) is a

test function and (1.26) holds. Thus,

sgk) = F((enit)r ), n = 1,2,3,......

- (2.15)

(2.16)

(2.17)
(2.18)

(2.19)

By part (iv) of Definition 2.2L, the sequence {(Zﬂit)krn(t)} represents

the generalized function(Eﬂit)kr. From part (ii) of Definition 2.24

and the comments preceding this theorem, the sequence {sﬁk)(f)} repre

sents the generalized function s(k). Therefore, by (2.19) and part

(v) of Definition 2.2l,

k)

(2nit)kr<+-———>s( s k=1,2,3,00000.

Let h(t) be an ordinary function having the property that h(t)G(t)

is integrable on (-=, ®) for every G(t) in S, and write

(o]
T(e) = J’ h(t)G(t)dt
- 00
It is easy to see that this defines a linear functional on S, for if
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- a and b are complex numbers and G(t) and H(t) are in S, then from the

linearity of integration, we have that
h(aG+bH) = ah(G) + bh(H) .

This naturally leads to the question of whether or not the ordinary
function h{t) determines a generalized function in the above manner.
To answer this, we must determine if there exists a generalized func-

tion h such that if {hn(t)} is a representative of h, then

n(g) = E S Jm hn(t)G(t)dt = Jm h(t)a(t)dt.

Lighthill, [3], pp. 22-23, shows that if h(t) is an ordinary function
such that (1+t2)-Nh(t) is absolutely integrable on (-»,=) for some integer
N, then there exists a regular segquence [hn(t)] such that for all G(t)

in S,

oLm J:m hn(t)G(t)dt = Jim h(t)a(t)at,

where the integral on the right side exists in the ordinary sense
because
[ac] @
j h(t)G(t)dt = J {(1+t2)'Nh(t)}{(1+t2)NG(t)} dt,
-0 -0
. 2,-N . 2N
with (1+#t°) "h(t) absolutely integrable for some N and (1+t°) G(t)
a test function. It is easy to see that the set of all such functions
n(t) forms a linear space K and that K is embedded in 5 by the map-

ping ® which maps each h(t) onto the class of all sequences eqguivalent to

{hn(t)} (see Figure 2.2).
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Definition 2.25 If h(t) is an ordinary function such that (1+t2)'Nh(t)

is absolutely integrable, then the image under ¢ of h(t)’in.g is called the

generalized function defined by h(t) and is denoted by the symbol'ﬁ.

Set of all
functions of a
real variable t

Figure 2.2

Let h(t) be an ordinary function which defines a generalized
function h. We already know that the generalized function T has a
generalized derivative (h)'. Suppose that h(t) is differentiable and
that h'(t) defines a generalized function.??ﬁjz Then we have the

following theorem.

Theorem 2.22 Let h(t) and h'(t) be ordinary functions which define
generalized functions h and (TF}, respectively. Then the generalized
functions (h)' and (B') are equal.

Proof: TFrom (2.05), we have that for the generalized function h and

(B)',
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(F)*(@) = -B(G') for all G(t) in S.

Now h'(t) defines (h') by

Cll—')(G) : er n'(t)G(t)dt.

«© .

We note that it suffices to show that (h')(G) = -h(G') for all G(t) in S.
Due to the conditions on the ordinary function h(t) and h*(t), each of tﬁe
infegrals

o

Jm h'(t)G(t)dt, J@ h(t)G(t)dat , and ‘f h(t)G'(t)at

(=] oo} @«

exist (finite). Integrating the first by parts, we have

b © .
- f h(t)a'(t)at.
=3, - ’

[oe]

mh'tG dt = _1i h(t)G(t)
J"_ ()e(6)ae = Lim,  n(e)of

(=)
Hence

b%i?; . h(b)G(b). and gHim h(-a)G(-a)

must both be finite. But the existence of the integral Jﬁ h(t)G(t)at

. o
implies that both limits are zero. Therefore

E)(e) = Jw n'(£)G(+)dt = - r n(t)6'(t)at = -B(e*) = (5)'(a)

-0

for all G(t) in S, and hence (h') = (h)!'.

Theorem 2.23 If h(t) is an ordinary function which is-absolutély
integrable on (-w,®)--so that its Fourier transform H(f) exists by

the classical Fourier integral theorem--then the Fourier transform of
the generalized function h defined by h(t) is the generalized function
H defined by H(f).

Proof: We have that
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Jw |(1+f2)'lH(f)|df

Jﬂm |(l+f2)'l Jm h(t)exp(-2nift_).dt|df

[+] [+ -]

1A

fo (i+f2)’ldf_ J:m- |n(t))at

@© <]

< )

Hence (l+f2)H(f) is absolutely integrable on (-»,®») and does define
a generalized function. Iet g(t) be any test function and let G(f) be

its Fourier transform. Then we have

H(G)

jw H(f£)G(f)ar

- jm n(t)g(-t)dt

@

- Jw n(t)F(G)at

=  h(F(G))
= Fh(G)

where we have used Parseval's formula and (2.12). Since this holds

for all G(t) in S, we have Fh = H and the theorem is proved.

2.3 THE DIRAC DEITA FUNCTION AND ITS TRANSFORM

1
We now show that the sequence {(n/x?) exp(-ntz)} is regular and
represents the important Dirac delta function §. This generalized

function has the property that for every H(t) in S,
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8(H) = H(0) . ' . (2.21)

To prove this, we shall need the following definite ihte'grals:

(a) J\m (n/:t)*exp(-ntz)dt. =1l;n=21,2,3,000uu.

[ee]

(b) jw (n/n)% t exp (-nte)dt = (nﬁ)%

o)

To establish (2.21), we must show that if H(t) is a test function, then

©

pims Ji (n/ﬁ)*éxp(-ntz)H(t)dt = H(0)

[ee]

Multiplying both sides of (a) by H(0), we may write

J’m (n/ﬂ)iéxp('ntz){H(t)-H(O)}dtl

[oc]

]

‘J‘w (n/x) exp(—ntg)H(t)dt - H(0)

= qu (n/ﬂ)*t exp(-nt2)—-£—lJ—L-d{H £)-H(0)} t'
- t

[>]

< J"w (n/n)%|t|exp(-nt2)

@

Hft)—H!O! dt'
t

Now by the Mean Value Theorem for derivatives, on each interval [0,t ]

(or [t,0] ) there exists a By 0<p, <t (t < By < 0), such that

Hr(gt) = M

t

Now H'(t) is in S and hence is bounded on the real line, so we have

for each t
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_(H(t) - HO),
A = sup(|E'(¢)]} > |H'(B)] = | ) - l
t
Putting into the above-and then using (b) gives

r’ (n/ﬁ)*exp(-ntz)ﬁ(t)at - H(0)

[o=]

< A Jﬁw (n/ﬁ)*rtlexp(-ntz)dt

2]

A(nn)*
and this last expression tends to zerc as n —> «. Hence we have
§(H) = 1i B ('n/ﬂ)%exp(-ntz)H(t)dt = H(0)
N

It is well known (see [L] ) that (n/ﬂ)%éxp(-ntz) and exp (-ﬂEfZ/n)

form an ordinary Fourier transform pair, that is,

(n/ni'e(-nt2)<%————>exp(-ﬂ2f2/n)

and hence the sequence {exp(-n2f2/n)} is a representative of the
Fourier transform of the generalized function §. Now for any test
function H(f), we have
® o
pLim Jﬂ exp(-ﬂzfg/n)H(f)df = J 1-H(f)df = I(H) (2.22)
o -
where I 1s the generalized function of the example following Defini-
tion 2.23. But from (2.22), we see that I is the generalized function
defined by the ordinary function h(t) = 1 for all t. Thus, by Defini-
tion 2.25, we have that I = 1, and hence F(§) = 1 and F-l(i) = 6.

More briefly,

1 (2.23)
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From (2.23) and (2.16), we have

<s————e£§§5(-2nitof) | : (2.2l)

5
Lyt

Note that exp(-EﬁitOf) does define a generalized function because
(1+t2)-lexp(-2ﬁitof) is absolutely integrable.

From (2.2L) and Theorem 2.21,

exp(2nitf )€—>6 (2.25)
o _ 1,-fo

Putting f_ = 0 in (2.25) yields
T€—>p (2.26)

First noting that cos at and sin at define generalized functions,
and then writing cos 2wtf = % [exp(Eﬁith) + exp(-Eﬂith)] , using

(2.25) and the linearity of the Fourier transform, we cbtain

Cos 2mtf «—> #[5 + 6, .1 (2.27)
o 1,-f 1,f
ol o
Writing sin 2xtf = = [exp(2nitf ) -~ exp(-2xitf )], in a
o 2i o o’ 1’
similar manner we find that

—_— 1 |
sin 2mtf <—>5- [ 61"fo - sl,fg (2.28)

Hence the generalized functions sin Entfo and cos 2ntfo defined by the
ordinary functions sin Eﬂtfo and cos Eﬂtfo have Fourier transforms, a

property which the ordinary functions do not have.

2.4 COMMENTS ON NOTATION

Tt has been mentioned that in [3] Lighthill uses an "integral®
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notation for s(@G), s in S, G in S. There, to denote the number s(G),

the symbol
'r s(t)a(t)at, | S (2.29)

is used, that is,
5(6) = J:: S(t)6(t)at = lim J:: s _(£)6(t)at (2.30)

In general, the expression (2.29) has no meaning as an integral, in fact,
the notation s(t) has no meaning in general since s is not an ordinary
function. However, for the space K of ordinary functions h(t) such
that (l+t2)_Nh(t) is absolutely integrable for some N, each quantity
in the notation
® ®
h(a) = I h(t)G(t)dt:nlgm J‘ hn(t)G(t)dt (2.31)
e -0
has a well-defined meaning. Furthermore, the integral notation is
preferred here because it is more explicit than the ﬁotation h(a).
This, along with some manipulative advantages of the integral notation,

leads us to make the following changes in notation.

Definition 2.4L0 A generalized function s will be denocted by the

symbol s(t) and for each G in S, s(G) will be denoted by (2.29).
Furthermore, for each h(t) in K, the symbol h(t) will be used to
denote both the ordinary function h(t) and the generalized function
h defined by h(t).

We shall now point out some changes which this makes in previousily
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encountered generalized functions. We now have that

(1)

(2)

(3)

(L)

The generalized function r is now denoted by the symbol

a,b
r(at+b) in order to be consistent with Definition 2.LO,
for we have

Im r(t)a(t)dt = lim J‘m rn(t)G(t)dt

w0 -0

and the defining sequence for r is obtained by réplacing

a,b
t by at+b in each rn(t), hence
~ CO

i: r(at+b)G(t)at = nl'% o J': rn(at+b)G(t)dt (2.32)

-]
The transform pair of (2.23) are now written as
6(t)e—>1 (2.33)

The transform pairs (2.24) through (2.28) are now written as

5(t-to)<——->exp(-2ﬁ'itof) - (2.3L)
exp(Eﬂitfo)<———>6(f-fo) (2.35)
l€e—>§(F) (2.36)

cos 2ntf <—> ;[5(f-fo) + 6(f+fo)]. (2.37)
sin 2ntfo<—+2—} [é(f-fo) - 6(.f+fo)] (2.38)

For each H(t) in S, in place of (2.21) we now have

Jm 8(t)H(t)dat = H(O) (2.39)

@
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2.5 EQUALITY OF ORDINARY AND GENERALIZED FUNCTIONS ON AN INTERVAL

In (B) of Section 2.1, it was stated that 6(t) is sometimes
described as having the property that §(t) = O if t £ 0. We can now

give a more precise meaning to this part of (B).

Definition 2.50 ILet g(t) be an ordinary function such that, for any

test function G(t) which is zero outside of the interval_(a,b),
g(t)G(t) is integrable on (a,b), a <b. If s(t) is a generalized

function such that

w b
I s(t)G(t)at = J‘g(t)G(t)dt (2.4L0)

o] a

then we define s(t) = g{t) for a <t <b.

In the sense of this definition, we have §(t) = O for 0 <t < =.
For suppose G(t) = O for all t <0, G(t) in S. Then G(0) = O and

we have

Jm §(t)a(t)at = G{0) =0 = JW 0-G(t)dt
o 0

where the first equality is obtained from (2.39). In a similar manner,
we find that 6(t) = O for -» <t < O. Thus, in the sense of

Definition 2.50, 8(t) = O if t £ O.

2.6 CONVOLUTION OF GENFERALIZED FUNCTIONS

We shall not attempt a complete discussion of the convolution of
two generalized functions. A convolution of generalized functions
cannot in general be defined without imposing some restrictions on one

of the functions. A complete discussion may be found in [5] and [8].

51



One immediate problem we would encounter in such a discussion would
be the lack of the concepts of convergence in S and continuity of gen-
eralized functions. For a proof of the continuity in a certain sense

of every generalized function defined here, see [6].

Convolution of a generalized function and a test function

The convolution of a géneralized function and a test function
is derived from a previously defined generalized function. Putting

a =1and b = -t in the definition of the generalized function 54 b2
2

we obtain for each G in S,

[oe]

5, _t(G) = lim Ji sn(x-t)G(x)dx

’ ©

(2.h1)

J:: s(x-t)G(x)dx

Fixing G and letting t vary, we see that this defines an ordinary
function of t. The convolution of s in S and G in S is defined to be

the ordinary function
s(t)*G(t) = s (G) (2.42)
1,-t

By making a change of variaeble in (2.41), we see that

s(t)xCG(t) LLim Jﬁ sn(x)G(t+x)dx

(2.43)

Jﬁm s{x)G(t+x)dx
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In the last lines of (2.L41) and (2.L43), we have reverted to the inte-
gral notation.

Note that if G is any function of S, then

]

5(1)%G(t) Jﬁm §(x)G(t+x)dx

-

a(t)

Convolution of generalized functions

Let r and s be generalized functions and suppose s(t)xG(t) is in

S for all G in S. The convolution of r and s is defined by

(r#s)(G) = r(sxG)

(2.4Lk)

(2.15)

When using the r(t), s(t) notation, the convolution will be denoted by

writing r(t)xs(t). The corresponding integral notation is cobtained a

follows. We have

(rxs)(G)

11
i p
8
P
H
~
ct+
-
*
n
~~
t
ot
M
—
ct
Q.
ot

and

(rxs)(G) = r(sxG)

J:: w(x) U_: S(t-x)G(t)dt] ax
J:: [I_: r(x)s(t-x)dx] G(t)at

Comparing (2.46) and (2.47), we have in the integral notation that

I

53

s

(2.L6)

(2.47)



r(t)*s(t) = Jﬁm r(x)s(t—i)dx ' _ _ (2.L8)

As noted above, §(t)*G(t) = G(t) for all G in S, and hence for

any r(t) in S, we have

r*8(G) = r(5x3) = r(G) (2.L9)

Therefore, r(t)x6(t) = r(t) for every generalized function r(t). 1In

the integral notation, (2.L9) yields
r(t) = J’ r(x)6(t-x)dx (2.50)

We have already shown that F(G(t)) = 1, and hence for any s(t)

in § we have that
F(s(t)x8(t)) = F(s(t))+1 = F(s(t))=F(8(t)). (2.51)
Clearly we have
s(t)*é(t-to) = s(t-to)

and by (2.16) and (2.34)

F(s(t-to)) exp(-ZniftO)F(s(t)),

F(é(t—to)) exp(-2nifto).

Therefore, we have

F(s(t)%6(t-t_)) = F(s(t))F(6(t-t)) (2.52)

54



Suppose that @(t) is a finite linear combination of delta func-

tions, that is,

N
o(t) = a,6(t-t,) . (2.53)
j=-M

where the aj and xj are constants. Then it is easy to show that con-

volution is linear, and hence if s(t) is in S

N
s(t)xe(t) = ), ays(t-ty) (2.5h)
j=-M

Applying F to both sides, using its linearity and (2.52), we obtain
F(s(t)x0(t)) = F(s(t))F(a(t)) (2.55)

Letting r(f) = F(s(t)) and q(f) = F(o(t)), applying F~' to both sides

of (2.55) and using (2.5h4), we obtain

P (r(£)q(f)) =

lll MZ

ajs(t-tj) (2.56)

j=-M

2.7 TRIGONOMETRIC SERIES

If sz(t) is a generalized function for each value of the parameter

z and if s(t) is a generalized function such that

L R J‘m sZ(t)G(t)dt= Jw s(t)G(t)dt (2.57)

[ee]
for all G(t) in S, then sZ(t) is said to converge to s(t) and we write

Jlim s (6) = s(t).
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With this definition of convergence in.§, we have the following

theorem (see[ 3] for a proof).
Theorem 2.70 The trigonometric series

o]
2: a_exp(innt/p) (2.58)
N==-® n
converges in the sense of (2.57) to a generalized function s(t) if and
only if a_ = O(InIN) for some N as |n] —> «. If (2.58) converges,
then its Fourier transform is '
r(£) = ), = 8(f-n/2p) © (2.59)
N==-om :
Also, s(t) = O only if a = 0 for all n.
The function r(f) is called a "row of deltas" of spacing 1/2p.
This function is represented graphically by drawing vertical lines of

amplitudes a, at the points I = n/2p (see Figure 2.3), This repre-

T

3/2p ] “1/p -1/2p 1/2p  1/p 3/20 2/p

FIGURE 2.3

sentation arises from the equality in the sense of Definition 2.50 of
r(f) and an ordinary function which is zero on (n/2p, (n+l)/2p). If

g(t) is an ordinary periodic function which has a Fourier series
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representation, then the an are the Fourier_coefficients (see[ 3] )

p
a = (1/2p) Jﬁ g(t)exp(-innt/p)dt.
-p

This is equivalent to the statement that convergence of a trigonometric
series in the ordinary sense implies convergence in the sense of (2.57)
and that the limits are the same. The converse is not true, for by

Theorem 2.70, the series

o]

23 cos(nit/p)

n=-co

converges in the sense of (2.57), but cbviously not to an ordinary

function.
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CHAFTER III

FILTERS

5.0 LINEAR SYSTEMS

A linear system, for our purposes, is a linear operator (mapping)
L of S into S. That is, if g(t), h(t) are in S and a,b are scalars,

then
L{ag(t) + bh(t)} = aL{g(t)} + bL{h(t)} (3.0)

We have already encountered some linear operators on S. The Fourier
transform and inverse Fourier transform are both linear operators on
S. Another example is the operation of taking the generalized
derivative of a generalized function.

Under certain conditions, a linear system L is completely charac-
terized by the effect of applying L to the set of generalized functions
of the form §(t-x). That is, suppose tha£ for every value of the
paraﬁeter x, we have L{§(t-x)} = hx(t)’ and that the family of
generalized functions hx(t) is known. Let g(t) be an arbitrary element
of S, and let r(t) = L{g(t)}. The function g(t) is usually called the
input of the linear system L, and the function r(t) is called the

output of L. From (2.50) we have

g(t) = [m g(x)6(t-x)dx, (3.1)

and applying L to both sides, we obtain

r(t) = L{ Jm g(x)8{t-x)dx}.

58



Assuming that (3.0) is sufficient to write
o]

L{ Jﬁm g(x)é(t-x)dx} = Jﬁ L{g(x)86(t-x)}dx

o]

then

r(t) r e(x)L(8(-x))ax

-0

jw g(x)n (t)ax

Suppose that L satisfies the condition:

(A) If L{g(t)} = r(t) and t, is real constant, then

[l

L{g(t-to)} r(t-to), i.e., L is time-invariant.

Then if L{8§(t)} = h(t), L(é(t-to)} = h(t-to) and

r(t) = J‘m g(x)n(t-x)dx, (3.2)

-0

that is, the output of L is given in terms of the input and a unique

function h(t). The function h(t) is called the impulse response or

weight function of the linear system L, and its Fourier transform

H(f) = j‘m h(t)exp(-2rnift)dt (3.3)

[=]

is called the system or transfer function of L.

Note that (3.2) is the convolution g(t)#h(t). If r(t)e—>R(T)
g(t)€e—>G(f), then using (3.2) and assuming that the convolution

theorem holds for these generalized functions, we have

59



r(t) = g(t)*h(t)e—>>C(£)H(F)

and .
R(f) = G(£)B(L), (3.h)
r(t) = qu G(£)H(f )exp(2nift )df

That is, the Fourier transform of the output of the linear system L
is equal to the product of the transforms of the input and the weight
function h(t). We also note that if G(f) is the transform of an input
and R(f) is the transform of a desired output, then from (B.L) the

transfer function of the linear system L giving the desired output is

H(f) = -ﬁ{i}. (3.5)

H(f) may in general be complex {see (1.38)]
H(f) = A(f)exp(io(f))

where A(f) and 6(f) have already been defined in the classical case

as the Fourier spectrum and phase angle of h(t), respectively.

Definition 9. A linear system L which satisfies (A) is called a
filter if A(f) is small in some sense on certain parts of the frequency

axis. A low-pass filter is a filter for which A(f) is small for

|f| > fc where fc is called the cut-off frequency. A band-pass filter

is a filter for which A(f) is small oubtside the intervals [§j,fj],
J=1,2,.e...., n. A frequency T is said to be passed by a filter if

A(T) is not small.
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3.1 TIDEAL LOW-PASS FILTERS

Ideal smoothing filter.

This, by defintion, is a low-pass filter which passes all

frequencies I such that lfl.f fc without change and deletes all

frequencies greater than fc. No phase shift is involved, and

hence 6(f) = O,

See figure 3.1.

Thus
1 le] <=
. - C
H(f) = A(f) =
0 lg| > £ .
C
H(f)
1
| T t
-f T
c [
FIGURE 3.1

The corresponding weight function is

hij
c

h(t) exp{2nift )ar

-1
c

T
c

2 Jﬁ cos 2nftdf
o]

sin 2ﬂfct
st
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If g(t) is the input to this filter, then the output is

r(t) = Jﬁw g(z)n(t-z)az,

(o]

whicﬁ has transform {see (3.4)}
G(£)H(£) lf] <f
R(f) =

0 l£] > £
where g(t)e—>G(f).

Ideal smoothing and differentiating filter.

By (2.17), if g(t)e—>G(f), then for n = 1, 2,..... .

e{®) (4 ) e——>(onif) (1)

From (3.5) we see that to find the b derivative of an input g(t)

the transfer function must be (2xif)™

th

using the ideal filter and find the n— derivative, the transfer

function is given by
.o\n
{2xif) ‘f‘ < fc
H(f) =

0 |£] > ¢
C

and the weight function is

iy
c

hn(t) = Jif (2xif ) “exp(2nift) ar

But differentiating (3.7) n times, we have
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fC
h(n)(t) = I (2nif) exp(2nift )df (3.11)
-f
and so
n (t) = (™ (1) (3.12)

Thus to find the weight function of the ideal smoothing and different-
iating filter we simply differentiate the weight function of the smoothing

filter the appropriate number of times. Then the output of the filter is

given by

g (e = Jﬂm g(2)n{™) (t-2)az. (3.13)

3.2 THE SAMPLING THEOREM

Jdeal filters of the type discussed above are not physically
realizable because of the jump discontinuities at + fc. Furthermore,
in digital filtering the input consists of a finite number of equally
spaced values gm,MIS m < N, which we may assume are samples of some
function g(t) for t = mAt = . Ve may also assume that g(t) defines

T
s

a generalized function, for, recalling Definition 2.25 and Theorem 2.23,
this does not place a serious restriction on g(t). It is obvious that
g(t) is not uniquely determined by the values 8, and hence the set of
iated wi f 8.
values gmare associated with a subset GMN o)
If we know that the samples g arise from a function g(t) whose

transform G(f) is zero for |f| > f then the subset GM of § is reduced

g’ N
1
t t c . i ; s rd=14mi .
0 a subse GMN GMN In this case g(t) is said to be band-limited
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Theorem 8. Shannon's sampling theorem (see [9] ).

If g(t) is band-limited, i.e., if g(t)€——>G(f) where

G(f) =0 |£] > £ (3.1L)
then g(t) can be uniquely determined from its values
n
g, = elzz) : - (3.15)
B
at a sequence of equidistant points of distance %?— apart.
' p
Furthermore
® sin = (Efﬁt—n)
et) = ), &r——TmremT - (5.16)
N=-co 5
Proof: We first compute the g . We have, using (3.14),
I
g(t) = G{f)exp(2nift)arf
_fB
hence
T
p
g = gl=) = G(f)exp(nnif/f, )df. (3.17)
n 2f 54
B -
Expanding G(f) in a Fourier series on (_fB’fﬁ) we have
=]
G(f) = nZ- ' Gnexp(—n:rlf/fa), ~fg < T < fg, (3.18)
="
where
f
p
¢ = G(f)exp(nnif/f_)df (3.19)
n 2fB £ B

B
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comparing (3.17) and (3.19) we have

G =on
T ef
& B
The function
G(f) = Z: S exp(-nmif/f.), -» < f < =,
2 Py B
-=ao0

is the periodic extension of G(f) and

G(f) = G(f) for -fB <f < fB.
Hence we may write
G(f) = H(L)G(f)
where
1 ] < fg
H(f) =
0 le] > £ -
Now (see (3.6) and (3.8))
sin Enth
— < H(f) (3.20)

So we have

@ g
H(T) Z} E%— exp(-nﬂif/fﬁ)
n==w B

G(f)

oo

EE— H(f)exp(-nﬁif/fﬁ)

n=-c 21
s
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and

é;(t) J~°° [ “Z _:l;}gﬂ(f)exp(-mif/fﬁ)] exp(2xift)df
-0 Nn==0o . -

o g ©
) —_ H(f)exp(-nxif/f, )exp(2nift)df.
Lo ?y U, B8

Applying the First Shifting Theorem gives

o g, sin 2nfB(t-n/2fB)

n=-o B n(t-n/_EfB)

g(t)

0
!
o
R

sin n(2f_ t-n)

N B
g
nzzw o ﬂ(Zthpn)

It

B}
true if in the proof the periodic function.a(f) is assumed to be of

fS fS
1for |f| < 5 5 B(£) = 0[] > =

I fs is any number such that fS > 2f then the theorem remains

I

period f_, end H(f)

Therefore

@ sin n(fst-n)

(3.21)

0
gl

(t)
® n=-o ®n ﬂ(fst-n)

where

g = &lF)- (3.22)

1If the g, are known, as assumed above, for M < n < N, then the

function
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4

§
\

N sin ﬂ(fst-n)'

gm(t) = Z &,

n=M n(fst-n) (5-23)

differs from each function g(t) of GD}IN by

M-1 sin ﬂ(fst-n) @ _ sin n(fst-n)

g ~ + E g = (3.2L)
n ﬂifst ns =1 n n_fst n )

€ (t) =
g

n=-co

where E = E(ELJ. Hence, at least in the cases where the series in-
n fs ’

(3.21) converges uniformly to g(t), the maximum difference

Max  [€ (£)] = max |g(t)-gy ()] (3.25)
t t

can be made as small as we please by taking a sufficient number of

terms in gMN(t). Thus we can associate with the samples {gn} a

unique function g(t) in the sense that (3.25) can be made arbitrarily

small by taking a sufficient number of samples.

5.3 DEFINITION OF A DIGITAL FILTER

Suppose that the sampled function g(t) is band-limited. Then

G(f) = O for |f| > £ If H(f) is a desired transfer function,

5"

then H(f)G(£) = O for |f] > £,. Thus if H(f) is a periodic extension

p

of H(f) with period f > 2fy, we have the transform R(f) of the output

BJ
r(t) given by

R(f) = H(F)G(f) = H(£)&(£), (3.26)

for all f.
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If H(f) is such that H(f) can be written as a trigonometric
series,

ﬁ(f) = f} a_ exp(2nﬂif/fs) (3.27)

Nn=-c
with & = O(lnlN) for some N as Inl————+> », then, by Theorem 2.70,

H(f) € S and is the transform of

h(t) = Ei a, 6(t+n/fs) (3.28)

n=-cw

Now g(t) is time sampled. In order to obtain a time sampled version
of the output r(t) we might define a convolution g(t)xh(t) and extend
(2.54) and (2.55) to functions @(t) = h(t). Assuming that we did fhis,

we would have
[e2]
r(t) = 23’ ang(t+n/fs)
N==w

which would yield the sampled version of r(t) for t = m/fs as

r(w/e) = 3 agl(wm)/s,)

n==w

which is impossible to use digitally since it requires infinitély
many samples.

Alternately, let

N
Ba(E) = Z% a_exp(2nwif/f ) (3.29)
n=i
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be a trigonometric polynomial which approximates H(f) in some sense.

Then (3.29) is the transform of

ny(t) = ), & 8(t+n/f), (3.30)

n=M

and by (2.54) the convolution g(t)-x-hMN(t) is defined for all g(t) € S.

Also (2.55) holds. Thus
R(F) = G(£)H(£) = G(£)B(f) = R(F) (3.31)
and T(t)e«——>R(f) is given by

T(t)

g(t)*hMN(t)

N ®
= Z a, I g(z)8(t-z + n/fs)dz

n=M

N
Z ang(t+n/:f‘S ).

n=M

For t = m/fs, r = r(m/fs), g, = (m/fs), we have

N
Tm = ), 28 &nin (3.32)

n=M

This is the fundamental-formula of digital filtering.

Note that any pair (3.29) and (3.30) determine a linear operator
L on S which satisfies condition (A) and which, on the subspace GS
of all band-limited functions g{t) with EfB < fs’ acts as a low-pass

filter. Now any finite set of constants a, determines a generalized
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function (3.30), which determines (3.29) and hence a linear operator L.

Definition 3. Let a s M <n <N, be any set of constants. Then

. ) - - - ) d . 3
the linear system L determined by the a 1is called a digital or

numerical filter. The constants anare called the weights of the
digital filter.

Application of T. must be limited to the subspace GS. Othervise
"frequency folding" occurs, i.e., frequencies in the intervals

(2n-1)fS (2n+1)fS
> s > ), n=+1,+2, .. ., are folded back into the

T
(— EE’ EE)' For example, suppose the input contains a frequency
T
component Acos Zﬂ(fo+kfs)t where fo < —g and k is a.positive

H

integer. Then if we sample at t = n/fs,

Acos 2ﬂ(f0+kfs)n/fs Acos [anon/fs + 2nkn |

Il

Acos (Eﬂfon/fs).

The sample values would be the same as those obtained from a component
Acos 2ﬁf0t for t = n/fs. Hence the filter treats the frequency

f +kf >7° /2 in the same manner as f .
o} s s o}

2.4 EVEN AND ODD TRANSFER FUNCTIONS

In most cases of interest here, the transfer function H(f) is either
even or odd. Hence the trigonometric polynomial HMN(f) which
approximates H(f) can be written in terms of cos 2nxf/f_ and sin 2nﬂf/fs

respectively. If we take M = -N some advantages are gained. Let
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N

"HMN(f) = HN(f) = Z}_ angxﬁ(2nnif/fs). | (3.;3)

n=-N

For even functions,

N
HN(f) a  +2 Z: a cos 2nnf/fs. (3.3kh)

n=1

For odd functions,

Hy(£)

n=1

Two questions now arise:
(1) given H(f), how are the weights a  to be chosen, and
(2) what is the error introduced by the approximation

R(f) = R(F)?

3.5 METHODS OF FILTER APPROXIMATION

If H(f) is an ordinary function, there are several methods of
approximating H(f) and obtaining the weights an. One of these
methods--the Min-Max technique--is given by Martin [111. Essentially,

it assumes continuity of H(f) in which case, if Qn(f) is a set of N
T £

continuous and linearly independent functions on (- EE’ EE] » then
there exists a polynomial

PN(f) = alQl(f) + .. .+ aNQN(f)

which deviates the least from H(f)on (- 55, 55), i.e.,
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N

max  |H(£)-B(f)| <  max |a(e) - ), . xQ (2]
fs fS fs fs a=1
fe(- =3 fe(-—3)

x_. The Qn(f) are cbtained after

for any numbers Xy X5y o - -y Xy

putting a constraint (or constraints) on a trigonometric polynomiai
(3.33). PN(f) is then fitted at a finite number of points to H(f)
in the above sense. A good approximation qf the anis obtained by
an iterative process, but the technique is long and complex, and not
very versatile. That is, any change in H(f) necessitates a complete
repetition of the process for finding the an

The method we shall use assumes that H(f) can be approximated by

a Fourier series,

[22]

H(f) = Z h_exp(2omif/f ), (3.36)
nN=-o
where fs/2
. = l/fS __f2/2 H(f)exp(-ennif/fs)df, (3.37)

and HN(f) is taken to be the truncated series for H(f),

N :
HN(f) = E:{ h_exp(2nwif/f ). (3.38)
Ly n s
This gives a function which is the best fit to H(f) in the least mean
square sense. (See [1]for a discussion of Fourier series.)

T
Noting that, since H(f) = O for |f| >~—§, the inverse transform
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of H(f) is
fs/2
h(t) = J1 H(f)exp(-2nift)df, _ (3.39)
£ /2
s
and comparing (3.39) and (3.37), we éee that

b = 1/fs n(-n/f_). (3.40)

This is the basic formula for computing the hn =a, to use in (3.32).

Therefore (3.32) can be written as
- N i
m = Z:‘ D Bwin® (3.L1)

The Min-Max technique uses a finite number of values of the transfer
function H(f), while the second approach assumes that H(f) is given for
all f, and hence the h may be computed from (3.37), or from (3.40) if
h(t) is computed first. In some applications, H(f) is known at only
a finite number of points and this second method is not applicable.

In particular, the case sometimes arises that
H(f) = A(Tf)exp(ie(f))

and only values of A(Ff) and O(f) are knewn at equally spaced points on
the interval (O, fS/Z). A method for computing the hn for such a filter

is discussed in Appendix B.

3.6 ERROR ANALYSIS

With an approximation Hﬁ(f) of H(f), (3.31) becomes
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R(£) = G(H)H(T) = 6(£)H(F) =R(£),

and so

R(£)-R(£f) = a(£) [B(£)-H(£)].

This gives the pointwise error between the spectrum of the desired output
and the spectrum of the actual output.
For a complex frequency component go(t) = Aexp(2nifot) in the

input we have

go(t) = Aexp(Eﬂifot)<%-———>A°é(f-fo) = G(fo)
and

R(fo) = A-a(f—fo)H(fo),
also

ﬁ(fo) = A°6(f-fO)HN(fO).

Denoting the difference in the outputs by e(fo,t) we have

| e(fo,t)| | ji A-5(f-fo) H(fo)-HN(fO) exp(2nift)df|

[o2]

|Aexp(2ﬂifot) H(fo) - HN(fo)

!Aexp(Znifot)I . l E(fO:N)|;

where E(fO,N) = H(fo) - HN(fO).

In the time sampled version:
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| E(fo,n/fs) l =| A exp(znifon/fs)\ - e(fO,N)|. (3.42)

Thus the magnitude of the error in a componént of the actual sampled
output is given in terms of the magnitude of the correspoﬁding component
of the input function, and of the magnitude of the err&r in the approi-
imation of H(f).

Approximations of €,

€

]

max s = max - o
. | e(s,m] e |5(£) - B ()] (3.L3)

.derived mathematically are usually found to be so large as to render

them useless in applications. In applications of thesmoothing filter
discussed later, acceptable values of € are in the range .005 <€ < .01,
or referred to unity, % % and l%. When speaking of percent error
we will always mean € referred to unity. TFor a given H(f), an N is
found empirically such that HN(f) approximates H(f) within the desired
limits.

However, satisfying the requirement that .005 <€ < .0l does not

imply the output error is within these bounds (see Chapter VII).

5.7 THE GIBBS' PHENOMENON

When approximating an ideal or designed transfer function
H(f) having one or more jump discontinuities with a truncated
Fourier series, there exist oscillations in the approximating
transfer function HN(f) near the discontinuities of H(f) due to
the Gibbs' phenomencn (see [12] ). No matter how large N is taken,

€ cannot be brought within the acceptable range .005.S € < .0L.
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To avoid this difficulty H(f) is first approximated by a function which

is continuous. In most cases, this imposes & restriction on the

input g(t). The particular cases of interest here shall be dealt

with in the next chapter.
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CHAPTER IV

FILTER DESIGN

4.0 ASSUMPTIONS ABOUT THE INPUT

In order to apply a digital filter to a set of samples {gn},
we have made two assumptions about the data:
I.. It arises from a function g(t) which defines a generalized
function, and
II. g(t) is band-limited.
In many cases of interest, the Fourier spectrum G(f) of a signal
g(t) consists of a desired signal spectrum in an interval [-fc,fc],

an unwanted signal spectrum (noise spectrum) in intervals [-f -fc)

B’

and (fc’fB]’ and G(f) = O for |f| > f When applying a low-pass

B*
filter, elimination of the unwanted spectrum is desired. Hence the
ideal filter transfer function, HI(f), is such that HI(f) = 0,

] > f,. Usually H(+ £ ) } 0 and Hy(£) bas jump discontinuities

I
at £ =+ fc. If the truncated Fourier series of HI(f) is used to
approximate HI(f), then, due to the Gibbs' phenomenon, large
oscillations persist in a neighborhood of + fc. Furthermore, the
amplitude of these oscillations remains constant with increasing N.
The truncated Fourier series is continuous everywhere because it is
a finite sum of everywhere continuous functions. Since HI(fC) # 0,
we expect that the truncated series, HN(f), is such that HN(fC) £ o.
Then, by continuity, HN(f) is non-zero on some interval (fc,fc+Af)

where Af > O and depends on N. Any unwanted frequencies which

appear in this interval are passed--though somewhat attenuated--by
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the approximating filter. Hence, in addition to tﬁe large oscillations
which appear near + fC’ unwanted frequencies afbitrarily close to + fc
cannot be eliminated by increasing N. This undesirable property must
be tolerated because it is a property of any truncated Fourier series
such that HN(fc) % 0. However, the large oscillations are caused

by non-uniform convergence of the Fourier series of HI(f). This can

be remedied by redefining H_(f) so that it is a continuous function.

.
We choose to do this on the intervals (-f -Af, -fc) and (fc, fC+Af)

for some Af > 0. Any unwanted frequencies in these intervals will
"be passed to some extent by the filter, but, as pointed out above,
this cannot be avoided anyway. However, in many applications unwanted
frequencies do not appear near ifc. Therefore, we make the following
third assumption about the data:
ITT. The desired signal spectrum and the unwanted spectrum of g(t)
are disjoint.
Then there exists a Af > O such that the signal spectrum G(f) = 0O

on (-fc-Af, -fc) and (fc, fc+Af). Letting f, = £ _+Af, we may modify

T

HI(f) on [-f -fc) and (fc, f_1to obtain a function H(f) contin-

T T]
uous for all f and thereby eliminate the Gibbs' phenomenon. H(f),

as defined on the intervals [-f is called the

T’ 1l

roll-off of the filter, and the frequency fT is called the termination

-fc) and (fc, f

frequency.

L.1 FILTER DESIGN BY CONVOLUTION

The usual approach to the design of a filter is to select the
ideal transfer function HI(f) on [-fc, fc] and then to specify the

roll-off. This gives the filter transfer function H(f) from which
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the weight function h(t) is found. The weights of the filter to
be used in {3.41) are then computed from (3.L0). In addition to
not being very versatile, this approach usually involves some
rather long and tedious integration in determining h(t).

We propose a different approach to the aesign which simplifies
the integration and gives considerable freedom in varying the roll-
off shape of the filter. We shall use the convolution theorem of

Chapter I:

k(t)g(t)e—> Jﬁm k(z)G(f-z)dz (L.1)

where g(t)€e——>G(f) and k(t)<—3K(f).

Before continuing, we note that filters for simultaneously performing

smoothing and differentiation can be found from the weight-transfer functions,

h(t) and H(f), of the smoothing filter by applying (2.17) in a manner
analogous to that in the ideal case [see Section (3.1)]. That is, to

smooth and find the m:E-l-1 derivative, the transfer function is

YN£) = (2nif) H(E). (L.2)
With

yR(t)e—Y"(£),
we have

yP(6) = nl™(e) (4.3a)
where

h(t)e——>H(F).
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In (L.3a), let t = -x/f_. Then t" = (-x/f_)" and at” = (-1/fs)ndxn.

Hence
a"n(-x/1)

(—l/fs)ndxn

yn(-X/fS)

o &n(-x/f )

dxn

(-1)",

Using (3.40) to compute the weights of the filter, we have

>
i

1z, vy (-k/1,)

/ey (-x/2 )|,

. {a" 1/t B(-x/t )}

= (-1)"r
S dxn x=k
We now see that we may write
dnhk
n n
v, = (-1, —= (L.30)
dk

where hk = l/fsh(-k/fs) and, for purposes of differentiating, k 1s treated
as & variable in the right side of (L.3b)

Returning to the problem of designing the filter, we conclude
from the above that we may restrict ourselves to the design of smooth-

ing filters. Hence suppose that

H(r) = Jﬂw K(2)G(£-2)dz. (L.11)
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Ideally, for smoothing we want H{f) to be continuous, and

H(f) = < monotonic decreasing, f, < f < fp, (4.5)

0, £ >f,,

_ H(-f), £ < O.

We attempt to find functions G(f) and K(f) such that H(f)
given by (L.L) has these properties. Then the weight function

h(t) is given by
h(t) = k(t)e(t). (4.6)
In the following, we choose G{t) to be the function

1, ] < (fc+fT)/2,
G(f) = (h.72)

0 l£] > (fc+fT)/2

Then comparing with (3.6) and (3.7), we see that the corresponding

weight function is

sin n(f +f )t
g(t) = oy e . (L.7p)

Noting that G(f~-z) = O for lf-z[ > (fT+fc)/2, (L.L) becomes

f+(fT+fC)/2
H(f) = K(z)dz. (L.8)
-(fT+fc)/2
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To find H(fo), K(z) is integrated over an interval of length (fT+fc)
with fo as its mid-point. Note that any function K(z) which is zero
for ]z] > (fT-fc)/Z = Af/2 and is an even function of z with area

1 on [-Af/2, Af/2] yields a satisfactory H(F).

Filter 1. The Ormsby smoothing filter (p=1).

In (L4.8) let

K(f) = K (f) = (h.9)

0, |£] > af/2

"See Figure L.l.

FIGURE .1

Then Af/2

kl(t) = j\ (1/af) exp(2xift)df

-Af/2
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AT/2

- E/Af J\ cos (2xnft)df
0

Af/2
0

I

1/xAft [ sin 2xft ]

sin nAft
nAft ?

and with g(t) from (L.7p), we have from (L.6)

B (%) =k (6)a(t)

sin wAft sin n(fT+fC)t
2

ﬂEAft

Changing to the angular frequency w = 2nf, AW = 2zAT, WT

w_ = 2nf _, we have
c c

2 'nM;t- si M
sS1 > in 3

h (t) =
1 nAth

and applying a well-known trigonometric identity

cos wct - cos th
hl(t) = 5
AW

This is the weight function given by Ormsby [1L Jfor p=1.

corresponding transfer function, as a function of f, is
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(L.10)

EnfT,

(L.11)
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(1, l£] < £,
0, | le] > £,
H () =4 (f+fT)/Af, -y S f < -f,
(fT-f)/Af, £, <f <ty
Hl(f) has a straight line roll-off (see Figure L.2).
H (£)
1
£, -t ' ' £
T The fe Lp
FIGURE L.2
dH_(f)
Note that is discontinuous at + £ and + f_.
ar - "c - T

Filter 2. The Martin-Graham smoothing filter.

In (L4.8) let

(/2af) cos (xf/af), |f| <af/z2,

K(f) =K. (f) = (L.12)

0, ] > af/e.
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See Figure L.3

ot -
o[

FIGURE L.3

Then

Af/2

(n/2Af) cos (r£/Af) exp(2nift)df
-Af/2

k()

Af/2

= (x/Af) J\cos (nf/AT) cos 2xft af

6}
(a£/2)

sin((n/Af) - 2xt)f sin( (n/Af)+2nt)f
= (n/af) ]

+
A (/Af) - 2xt) 2((xn/Af)+2xt)
0

= (1/2af) +

sin((xn/2)-naft)  sin((x/2) + naft)
((1/a£) - 2t) ((1/af) + 2t)

= (1/2ar)

_cos ATt + cos nAft
L((l/Aﬂ - 2t) ((1/Af) + 2t)

_ cos wAft
(1-uAf2t2)
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Then with g(t) from (L.7b), we have from (L.6)

i

hy(t) = k,(t)e(t)

cos wAft sin n(f +f )t
T "¢
= > o > (h'15)
nt(1-LAfTt )

where Af2 = (Af)z. We shall also use the notation Aw2 = (Aw)e.

Letting v = 2xf in (L.13) gives

cos(awt/2) sin((wT+wc)t/2)

h (t) =

(
e ﬂt(l—AW2t2/ﬂ2)

and using a well-known trigonometric identity gives, after simplifying,

n(sin w.t + sin th)
h (t) = (L.1h)
2 2t(x° - Awet?)

This is the form of the weight function given by Graham [ 13].

The form given by Martin [10], [11] is obtained from (L.13) by

going to the frequency ratio 7 = f/fs, T, = fc/fs, Tp = fT/fS,

Tq = Af/fS (= 2h in Martin's notation), and computing
h = (1/fs)h2(-n/fs)
cos n(Tde)(—n/fS) sin ﬂfs(Tc+TT)(-n/fs)
= (/1) L 2g2n2 /52
ﬂ(-n/fs)(l- T fn /fs)
cos nnT, sin nﬂ(ETC + Td)
= 22 * (J—l15)
nr{ 1-4750%)
d
The relation 1., = T+ 7. was used in obtaining the last line. This

T c d

is a cconvenient expression for computing the weights hn of the

filter. The value of ho is computed by using L'Hospital's rule,
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and

h

o ='2Tc+’rd = (ﬁf+rc)/fs.

The same procedure must be used for finding hm
then (L4.15) assumes the indeterminate form 0/0

we have

ho= (Td/2) cos (ﬂTc/Td) = (Af/2fs) co

(4.16)

if m = 1/2¢d for

. In this case,

s (xf /0T) (L.17)

The transfer function of this filter, in terms of f, is

-
1 lfl Sfc’
0, l£| > £,
Hz(f) = ﬁ (l+COSﬂ(f-fc)/Af), -
L (l+c05ﬂ(f+fc)/Af),

See Figure hL.h.

Alternate expressions for the roll-off are

1]

(l+cosn(f-fc)/Af) coszﬂ(f-fc)/ZAf

and

(1+cosn(f+fc)/Af) coszﬁ(f+fc)/2Af

Note that Hz(f-) has one continuous derivative,

discontinuous at + fT and + fc.
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£ <f <1,

-f, <f <-f.
c

d2H2(f)
and — is
darf



B ()

1
! T N T
- =T, -f T T,
T .
¢ FIGURE L.l ¢ T
LL.2 'COMPARISON OF THE PERFORMANCE OF THE ORMSBY AND MARTIN-GRAHAM
SMOOTHING FILTERS.
A comparison of the above filters cén be drawn by expressing
Hl,N(f) and HE’N(f)’ the truncated Fourier series for Hl(f) and
HE(f)’ respectively, in integral form. We expand Kl(f) and Kz(f)
in a Fourier series, then truncating these series gives:
f+(fT+fc)/2
Hl,N(f) = J1 Kl,N(Z)dZ (L.19)
f-(fT+fc)/2
f+(fT+fc)/2
Hy, (f) = Jﬁ K2,N(z)dz (L.20)

f-(fT+fc)/2

Since Kl’N(Z) is the truncated series of a function with jump dis-
continuities at + Af/2 [see (L.9)], the Gibbs' phenomenon is present.

Hence overshoot 1s present near + Af/2, the amplitude of which can
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%,

not be reduced by increasing N. We can expect some'relatively large

oscillations to be present, at least for small values of N; in
Hl,N(f). K2(z) is continuous, andlthe amplitude of the oscillations
of KE’N(?) decreases monotonically with increasing N. Hence we expect
the Martin-Graham filtef to perform bettér than the Ormsby (p=1)
filter. The results of comparative programs where the truncated
series (L4.19) and (L.20) were computed at equidistant points indicate

that this conclusion is true. For € = .01, over 50% more weights

were required by the Ormsby filter.

.3 SOME NEW SMOOTHING FILTERS

We shall give, without performing the details of integration,

several new designs which are of some interest.

Filter 3. Let

f
(2/Af) cos®(xt/Af) l£] < af/2
Ky(£) = ﬁ (L4.21)
) lef >0 .
Then
1 sin nAft
Kk (t) = ——— + ———
E 1-ATt2 TALE

h5(t) = kB(t)g(t)
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- \)‘—"
)

1 sin nAft sin ﬂ(fT-+f )t
. C
= (=) 2, ..2 )
1-AF5% 7 Aft
1
= ———— - h (t) (L.22)
1-ar2 L

where hl(t) is the Ormsby weight function (L4.10). The roll-off of

H3(f) is given by
1/2x sin 2n(£-f )/Af + (£.~-F)/AF f <f<f,,
c T c -7
and H3(f) has two continuous derivatives. (see Figure 4.5)

Filter L. ILet

[ (35/LAT) cos ° (xf/Af), |£] < az/2,
K),(f) = < (4.23)
O |£] > af/2.
Then
9 cos wATt
k (t) = ‘ )
L 9-Lar% & (1-Lagt?)
and
b (t) =k (t)g(t)
9 cos nAft sin ﬂ(fT+fc)t
9-LATZt?  1-LArceS st
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=m h2(t)’ (L.2h)

where h2(t) is the Martin-Graham weight function (L.13). The transfer

function Hh(f) has three continuous derivatives and the roll-off is

given by:
9 a{£-f ) 1l 3r(f-f ) 1
Hh(f) = -— cos ( ) w —cos (m—m =) + —
16 AT 16 AT 2

for f,<f <f,. This is shown in Figure L.5.

1
J @ H, roll-off
- Q) H3 roll~off
. @ H, roll-off

L

2

FIGURE 4.5
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Filter 5. Let

r (3/2Af) (l-(bfe/Afz)), |£] < az/z,

K (f) = { (4.25)

N

This gives a weight function, where AR = (af)”,
n (t) =;-T-}_-§f—5-t-£i [sin a(£y+€ )t ] * [2 sin naft - 2naft cos maft ].  (1i.26)
The roll~off of H5(f), fc <f< fT’ is a third degree polynomial and is
essentially the same as that of He(f).
Using the quantity € defined by (3.42) as a measure of the
performance of a filter to compare the above filters, one is led
to the following conclusions:
1) The Martin-Graham filter gives € = .0l with smaller N than
any of the others. 1In fact, out of numerous designs none
has been found which gives € = .0l for smaller N than this
filter. The performance of filter 5 is essentially the same,
the € values differing slightly in the third decimal place.
2) Filters 3 and h.give values of € < .005 for smaller N than
the Martin-Graham filter and filter 5.
3) In no case did the Ormsby filter perform as well as the

other filters.
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In comparison with the Martin-Graham filter, the only advantage
filter 5 has is that no special evaluation for hn’ n # 0, is requifed;
hO is the same for all the above filters. In addition to the improved
performance for € < .005, useable error bounds can be found for filters

3 and li without resorting to empirical methods.

L., SOME SMOOTHING ERROR BOUNDS

Except for filter 5, each of the above weight functions are of

the form
k(t)

n(t) = Be)

where k(t) is an expression containing sums and products of trigono-
metric functions of t and P(t) is a polynomial in t. The Fourier
coefficients of H(f) -omputed from h(t) retain this character,
k(-n/f_)
h = (1/2)n(-n/f) = (1/£) ?7757557'

Now the error as a function of f and N is

€(f,N)

H(r) -H(f)

=]

= 2 Z) h_ cos 2nn(f/f )
n=N+1 © S

@K

k(-n/f )
23 —_— 5

(2/fs) cos 2nn(f/fs)

n=N+1. P(-n/fs)

Letting A = max |k(-n/fs) cos 2nrx (f/fs) |, we nave
n,f

23
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i 1
€ =max |€(£,N)| < (2a/f) _21_ | |. (L.27)
£ ’ s oL EC-B/EL)
If |P(t)| > 0 for ¢ >.(N/fs), the sum in (L.27) can be approximated by
@ dx
Pi-x7fss :
N

Martin~Graham bound

The above method gives (see Figure L.6)

y LN2AL?
€ < 1/xm log N TR (4.28)
LN"AT -f_

For € = .01, the predicted value of N 1is

N >2.85 fS/Af (4.29)
and for € = .005

N > ke /Af = /7, (L.30)

These values of N are much too large. It has been determined

empirically that N > 1.25 fS/Af = 1.25/Td gives .005 < € < .0O1.

Filter 3.

For this filter,

N NAF+f
€<= log —— o 2fS/NAf . (L.31)
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For € = .01, the predicted value of N is
N > 21 /ar = 2/7,, (L.32)
and for N > ij/Af = 5/Td, € < .003% (see Figure L.6)

Filter L.

For this filter

2nPAs? 2f52] - 16 log 2nNAT

Esé; {9 log [ Lx "N Af"-m

- log [LmENEAf2 - 9“2f52]]- (L.33)

For €

.01, the predicted value of N is the same as in (L4.32).

For N > 5fs/Af, (L.33) gives € < .001lL (see Figure L.6).

4.5 SMOOTHING FILTER CONSTRAINTS

In general, a signal g{t) may have a polynomial content, and in
such cases g(t) is not band-limited. Denoting the polynomial content

cf g(t) by P(t), if

g(t) =g(t) + P(t) (L.3L)

where g(t) is a band-limited function, then the weights can be con-
strained so that the sampled values P(mAt), At = 1/fs, are passed
without error.

We recall that the output of a digital filter is given by

T m Z h1{1gm+n
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.019
.018

Nk,

.016

.015
<01k
.013
.012
011
.010
.009
.008
007
.006
005
-00k

.003

»,001

Filter 3

Filter 2




Applying this to the sampled version of (L.3L) gives

N
"n n;i\l B, L&y, + P [mrn)ay] ]
N - N
B nZLN hngm+n + n;;N th [(m+n)At]_

Since g{t) is band-limited, the first term on the right side of
(L.35) poses no problems. We want the second term to be P(mAt).

Assuming that P(t) is of degree p,

D .
P(t) = ) ato.
j=o0 9
We want
1Y
P(mat) = ), a (mat)?d
j=o0 J

il
a3
M g

N ..
), b a (mn)datd,
n=-N j=0 9
Interchanging the summation gives
p p N
Z: a (mat)?d = 2: a, Z} hn(m+n)JAtJ.
j=0 j=0 9 nz-N

We see from (4.37) that it suffices to consider the k2 term
ky. k ! k  k
m AT = Z: h (mtn) At
n

n=-N

or dividing by Atk,
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N
Il'lk = ~Z—- h (Iﬁ+n)k.
n=-N "

Expanding (m.+n)k and summing each term gives

N N
g ), h + ). nh o+ .
N=-=N [ n=-N n
N N
k| k-r Cor r
+(r)m Z}f nh o+ .. .4 Ezjnkhn. (L.38)
n=-N n=-N
From (L4.38) we see that it suffices to have
A: N
), by =1 (4.39)
n=-N
B: N
Z: nJhn =0, Jg=21,2, . . .,p. (L.Lho)

The transfer function of a digital smoothing filter which approxi-
mates smoothing filters of the types discussed in Section k.1 is an

even function of f and can be written in the form
N
= + . .
H(f) =B +2 n; n_ cos 2nx(£/t,) (L.h1)

The weights are related by hn = En' Hence for odd integers j,
ndh = - (~n)’n

n -1

or
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and

N
), n’h_ =0 ' (4.L2)

n=-N o

Thus (L.LO) is satisfied for all odd integers j without imposing any
conditions on the h . If(L.39) is satisfied, the filter passes a
first degree polynomial exactly. If, in addition, (L.LO) is satis-
fied for j=2, the filter passes a third degree polynomial exactly,

etc. Practical considerations usually limit j to 2, i.e., p=3.

The simplest way to satisfy (L.39) is to use new weights

(L.b3)

If N is chosen so that .005 < € < .01, the new weights usually do not
change € significantly.

For j > 2 the usual approach is to derive the constrained
welghts 'En so that the mean square error between the unconstrained

transfer function H.N(f) and the constrained transfer function

N
-ITIN(f) =h + 2 Zo -Encos Enn(f/fs) (L.hlk)
n=

is minimized.

Note that (L.39) is equivalent to the condition
H(0) =1, (L.L5)

and (L.LO) is equivalent to the conditions
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aIF (£
. HN - =0, 1<Jj<p. (L.L6)
ar?

£=0

Taking the case p=35 and using a Lagrangian multiplier, we wish
to find weights En in terms of the b such that

fs/2

N
R = Jﬂ ['ﬁN(f) - HN(f)] 2 a4 +a Z} ngﬁn
n=1
0

is minimized, i.e., —— = 0, 0 < m < N, and such that ﬁﬁ(f) satisfies
3h
m

(L.45) and (L.L6) for p=3.

Ch Fy(2)
d f
3R J“ - Hy 2
LB 2 2 (£) - B (F) df + A m (L.b7)
3h Uy iyt ] dh
m 0 m
The condition (L.15) is incorporated in the following way:
N
E(0) =& +2 h =1,
HN © n=1 n
SO
_ N
h =1-2 h_. (L.L8)
0 n
n=1
Hence
— N —
By(£)-Hy(f) =1 +2 ) B (cos 2nmf/f_ -1) -H(f).
I=
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Therefore a-ﬁN ‘
—= = 2 (cos 2ux £/f_ -1),
dh
m
and £ /2
s
3R N ) N ]
— =1 [1+ 2.23 hn(cos 2nn f/fS - 1) - h -2 z;hncos Enﬁf/fs
o n=1 ) n=1

[cos 2mn:f/fs - 1]df  + Am°.

Let 6 = 2:tf/fs, then df = (fs/2ﬂ)d9 and

3R

dh
m

7 N N
= 2f_[xn j [1-2 E h - h+2 Z (h_-h_) cos né][cos mo-1 ]d9+)\m2.
s n o n n
O =l n=l

1 N N
- ZfS/ﬁ J‘{ [1-2 Z L - b Jcos mo-1] + 2 Z (B _-h ) cos né cos m8
5 n=1 n=_,

N
-2 Z (h -h_) cos n6} d6 + kmg
=1 n B

N
- - 2
- 2fs/Jr (~m[1 - 2nZ,lhn"ho ]+ (hm—hm)} + Am .

Setting this equal to zero gives

N
-l + 2 A N -h + 2 =
2f, [h_ nZlhn + 1 -b] A = o.

N
From (L4.L8) we see that we can replace 2 E h -1 by -'1-10.
n=1
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- = 2
21’3{[h0-ho + hm-hm]} + Am = 0.

Let &= -h o? then
hbp=9% - -—Ef; iy (4.49)

Summing both sides of (4.49) from 1 to N, then multiplying both
sides by 2, and adding 0§ to both sides gives

N N N
8+ 2 ZK -2 Zh = (2M1) a--L Zmz'
m m f
m=1 m=1 S m=1

or using (%.45) and reverting to the n subscript,

N N
(2%+1) 6 - %— Z.‘lz =1l-h -2 Zhn- (4.50)
S
n=1

n=1

Multiplying both sides of (%.49) by m°, summing from 1 to N, using
(4 46)==(or 4.40 with j=2)--and reverting to the n subscript gives

N N
Z - — l* - Znehn (k.51)
n=1 S n=1 n=1
We solve (4.50) and (4.51) for & and A .
Let
N
Q=1-h -2 Zhn
n=1
N
Q= ) o
n=1
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N
_ 2
Sl = n
n=1
S 4
Sp = }Z" .
n=1
Then
of [S.Q. +(2%+1)Q.]
A= -8 lql 2Q2 (h.52)
(2N+l)82-281
and
S.t+2S
o= 220l (4.53)
(2n+1)s2-2sl
Then
Ho =h_+ & (4.54a)
and from (4.49), for n > 1
ho= hn + 8 - §§; A (4.54Db)

2 [ad
- Q182+281Q2-n [ulQ1+(2N+l)Q2]
2 L ]

n (2N+l)82-231

Note that

2 _ N(N+l)(2N-l)(2N+3)(2N+l)2
1 90 *

(2N+1)32-2s

The constraint for p=1 is obtained by letting A = O in (4.54b).

Then we have

hn=hn+5’ . n=0’l,tco,N
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where

N
1-h -2 Ylll
o /.n

5 = n=1
- ON+1

1-5(0)
= TEWI

4.6 BAND-PASS FILTER
The ideal single band band-pass smoothing filter transfer function is

- —

1 fc < f < fc
BI(f) = 40 O<f<f, f>f. (%.55)
B_(-f) f<O
L L
See Figure 4.7.
B,(f)
+1 —_—
1 | | | f
-f -f f f
¢ c Figure k4.7. c c

Note that BI(f) can be written as the difference of two ideal smoothing

filter transfer functions [see (3.6)] Hl(f) and Hg(f), where H2(f)

has cut-off -fc and Hl(f) has cut-off f,. Then the weight function

b(t) is

»(t) = h2(t) - hl(t) (4.56)
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where

hl(t) <« Hl(f),

h2(_t) > Hz(f),
and

b(t) e—> Bl(f).

A useable design is obtained by taking the difference of two
low-pass smoothing filters of the types discussed in Section 4.1 and
Section 4.3. The difference of two Martin-Graham filters, each with
roll-off length Af gives a satisfactory filter. The weight function
of the resulting band-pass filter is then given by (4.56) with hl(t)
and h2(t) the weights of the Martin-Graham filters. The weights of
the corresponding digital filter are given by (3.40) and (4.56),

o
It

1 -n
s
s S

1 - -
+ () - (F)]. (4.57)
s s s

Now suppose B(f;fo) is a band-pass smoothing filter with the
mid-points of the "pass bands" at + fo’ "pass band" width 2Af, and
roll-off width Af. For purposes of illustration, we assume that
B(f;fo) has the Martin-Graham type roll-off [see (4.18)]. Let

B 0< f<Af
H(f) = 4 -21-[1+ cosﬁl@] AF < £ < AT+AF (4.58)
0 £ > AT+AL
NH(-f) F<O.

See Figure 4.8.
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H(F)

Af Afanf
Figure 4.8.

Then H(f) is the transform of

sin 2xAf + sin 2x(Af+AF)t

h(t) = (4.59)
oxt(1 - GAFTES)
For £ >0
B(f;fo) = H(f - fo),
and for £ <0
B(f;fo) = H(f + fo).
Thus
B(f;fo) = H(f - f0)+H(f + fo), (4.60)
(see Figure 4.9).
. B(f;fo)
41
1 l T 1 T 1
-f .
o Figure 4.9,
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Taking the inverse transform of each side and using the shift theorem

(l.22)-(or its generalized equivalent) gives

(st ) = h(t)(exp(2ﬂifot) + exp(-énifot))

2h(t)cos aﬂfot. (4.61)

The weights of the corresponding digital filter are given by

f

- (o]
bn(fo) = 2h _cos 2nn§;, | (4.62)

For a given £ the weights can be computed from (4.62) more
quickly than fram (4.57). If several successive filtering operations
are to be performed for & set of fo values, say fl’fé’ . . ”fk’
then, using (4.62),

£,
bn(fj) = 2h cos Enn?l , 3= 1,2, « o «,ke
S

But in order to use (4.57) the functions hl(t) and he(t) must be
changed for each new value of fj and the entire expression must be
recomputed.

From (4.62) we see that the error €' of a band-pass smoothing
filter may be as much as twice the error € of the smoothing filter
whose transfer function is H(f).

In a manner analogous to the ideal smoothing case in Section 3.1,
the transfer function of a filter which will simultaneously "band-pass"
filter and find the nEE derivative is

BM(£) = (2qif)® B(£) (4.63)
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where B(f) is the transfer function of a band-pass smoothing filter.

Then if b(t) €«—> B(f).

o) () = it) «—> BY(2),

and the weights [see the derivation of (4.3b)] are given by

vy = (-1)(g)"
where bk = %— b(%E)-
s s

The weight function of a filter having several pass bands, each
of equal pass width and roll-off width, can easily be found from

(4.61).

bands, and denote the transfer function by B(

(see Figure 4.10).

Letifl’if2,o o.,i

dpbk
n,

k

f;fl,

f. be the mid points of the pass

£, .,fk)

B(f;fl,fe, . . .,fk)
41 —
f ! { \ i {
| \\ [ j
</ R A - ‘”.,/ |
-f ~-f £
k L Figure 4.10. = k

Then the weight function is

b(t;fl,fz, . .,fk) =

k
21 §;1cos 2nf ) n(t).
o

J:
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The weights are given by

1
n f
s

o
1t

b(

-n

T’
]

J=1

ot

k £
2hn{ zcos 2nn ?1].

9 * o -,fk)

s
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CHAPTER V
FILTERS FOR SMOOTHING AND DIFFERENTIATION

5.0 MARTIN-GRAHAM FILTERS

We shall call a filter a Martin-Graham filter if its transfer

function either uses the Martin-Graham roll-off [see (L4.18)] or is
derivable from a transfer function having the Martin-Graham roll-off.

In Section L.1l, we discussed the Martin-Graham smoothing filter
and found its weight function h(t) [see (L4.13)] . From h(t) and the
formula (3.40) for computing the weights of the approximating
digital filter, we found the weights hn &ee (L.15)] which are used in
the basic formula of digital filtering,

_ N

r.o= HZLN hngm+n’ (3.L1)
where the gj are the input data values and the ;j are the smoothed
output values.

A Martin-Graham band-pass smoothing filter is easily obtained
from the smoothing case and the discussion of Section L.6.

In this chapter, we shall derive the weights of Martin-Graham
filters for smoothing and differentiation. When referring to a set of
datsa {gm], we assume that the data arises from a function g{t) such
that

1) g(t) = g(t) + p(t), where p(t) is a polynomial in t,

2) 'g(t) satisfies conditions I - III of Section L.O,

3) g, = g(%—) where fs is greater than twice the highest

S
frequency in g(t).
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Let g, be the first data value and g; be the last. If p{t) is not

identically zero for %— <t 5%—-, then, in order to pass p(t) or
differentiate it, consiraints ase necessary. Those for smoothing are
in Section h.5; A general procedure is given in Appendix A for the
derivative cases, and the constraints for passing the first deriva-

tive of p(t) will be given in the next section.

5.1 SMOOTEING AND FIRST DERIVATIVE FILTER

We have shown the transfer function of a filter which will

smooth and find the first derivative to be
1 .
YY) = (2nif )H(F)

where H(f) is any smoothing filter transfer function [ Put n=1 in
(L.2)] . Note that Yl(f) inherits the cut-off, f_, and termination,
fq, freguencies from H(T).

Putting n=1 in (L4.3b), we obtain the weights of this filter in

terms of the smoothing weights

1
Y T T's Tk
1 -k
where h(t)€e——>H(f) and h, =% h(—% ).
s s
The Martin-Graham smoothing filter weights giren by (4.15) in
R W il
terms of the frequency ratio, T = E”fs = fs, are
- cos knT, sin kﬂ(2TC + Td)
k ~ 2
ko 1-Let ;)
sin 2n7. Kk + sin 2nt k
_ T c
= - ,
2ﬂk(l—th2ka)
T _I
a T ¢ T Ty TF
S <] S
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Then

: 22
Tq €OS 2nTok + T cos 2nt k hk(l-IZTd k)

Ao e T T
= o - 22
k s k(l-).rrdzkz) k(1-br k")
T éos 2nT. k + T cos 2n7 k -h (1-i2T 2k2)
I T T c c k d
-7 2
& K(1-lT, x°) (5.2)

Note that ylk = —yi, and by applying L'Hospital's rule, yé = 0.

Also note that for k = —
2Td

rule. [ See Section 5.hL. ]

5 yi must be computed by using L'Hospital's

In a manner analogous to that of Section h.5, we find that in
order to pass exactly the derivative of P(t) of degree p the following

conditions must be satisfied by the approximating filter transfer

function
1 N 1
YN(f) =21 Z} v, sin 2nnf/fs (5.3)
n=1
1
(1) YN(O) =0
1
dy(f)
(2) —g—| =1
w=0
aPyo(r)
(3) ——— =0 for p>1.
ar®
aPyi(s)
Since is odd for all even p > 0, (1) and (3) are automati-
af

cally satisfied for even integers p > O. In particular, if p(t) is

of degree 2, we need to satisfy only (2). The constrained weights

;i are given by
-1 1 le
Vg =V t 5= s k>1, (5.4)
2
=1 _ =1
yk. yk’
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1

where

i}

N
f_z 1
Q'l 2 xWn

n=1

92 =Zn2 .

n=1

(see [1;] for the derivation for p=4 from which the case p=2 follows
easily.)

The constrained transfer function is

- 1 2nnf
Yy(f) =21 ) F sin 2 (5.5)

n=1 s

In order to smooth and differentiate a set of data {%n} where the
1

polynomial content is of degree 2 or less, put hn=,37n in (3.41).

This gives

R AT (5.6)
n=«N
1 1
A h Y AT
If ve let B = &, then’}i = Fanay = Then
S S 5
N
1 AL
e . s onnf .
YN(f) = 2lfsz ¥, sin T (5.7)
n=1
and
N
m = fsz Yn Emn” (5.8)
=N
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A A
Using ¥, = =¥, ¥e have
_ N
ro=f ) ~g 1. . (5.9)
Writing
YH(£) = 2nifH(f) = 2xfH(E) exp(ix/2),
X

we see that Y (f) has a phase shift of n/2 = 90°, i.e., O6(f) = n/2.

derivative filter.

| 2nsH( £)]
| — | [ 1 ) f
-f -
T fc Figure 5.1, fc fT

Other first derivative filters with different roll-offs have
been examined and in each case it was found that the Martin-Graham
filter yielded the same or a more accurate result.

In an attempt to avoid the lengthy computation of (5.1) for
the weights yi, a "three~point derivative" of the smoothing weights

h. has been examined. Let

k
h -
Tkl b g
o, = 3 (5.10)
f

s

With H(f) the transform of the weight function h(t) from which the

hk are computed, we have

T
b =3 [hk+1 -h, 1 ]
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=

/2 [n((-k-1)/2_) -n((-k+1)/f )]

f /2
=1/2 Jﬁ ° H(T) [exp(-2ﬁi(k+l)f/fs)- exp(-2ﬂi(k—l)f/fsﬂ ar
—fs/2

T /2

-fs/2

r /2
S

exp(Eﬂif/fs) - exp(—Znif/fS)

[ 21
-f_/2
£ /2
s -sin enf /T
6, = 1/fS Jﬂ -—§;§7§—L—§ [ (2nif)H(F) ]exp(-Enikf/fs)df.
S
-fs/2
The actual weights are
£_/2
1 ) )
Vi = 1/fS J\ (2nif )H(T) exp(—2ﬂ1kf/fs) ar
-fs/2

Comparing (5.11) and (5.12), we see that if we define a weight

?L = —Qk, then the transfer function of the ?L_is
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1/2 Jﬂ ° H(T) exp(—Eﬂikf/fS) kxp(-2nif/fs)-exp(2nif/fs)]df

][-iH(f)exp(-Znikf/fs)] ar
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sin Eﬂf/fs

—5;%7Er———(21if)H(f)

which is the product of the desired transfer function and

sin Zﬂf/fs
2nt /T .
s
Now
1 fs/2 sin 2ﬂf/fs
Ve Yy = l/fs Jﬁ (2n1f)H(f)[l—7§;f7E;——— ]exp(-ankf/fS) af
-fS/Z
and
sin 2nf/f
1 - £ =0
2nf7fs

for lf/fs‘ small. If the cut-off fc is small, then H(f) in the above
integral becomes zero for f/fs relatively small. Then the ?% are
good approximations of the yi. It has been found empirically that

for filters such that fc/fS < .1, the ?L give an acceptable output.

5.2 BAND-PASS SMOOTHING AND FTRST DERIVATIVE FILTER

We have shown that the transfer function of a band-pass filter

which will smooth and find the first derivative to be

BY(£) = 2xifB(f)
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where B(f) is any band-pass smoothing filter transfer function
[put n=1 in (4.63)] . Note that BL(f) has the seme cutoff
and termination ﬁ-equencies as B(f). B(f) may be designed by either
of the methods discussed in Section 4.6.
Putting n=1 in (4.65), we obtain the weights of this filter
in terms of the band-pass smoothing weights

d
bl=-f __b.l:.

k s dk

where b(t) <—> B(f) and b_= %— b(%’i .
S S

If the b,_ are obtained by taking the difference [see (L4.57)]

k
of the weights of two low pass filters, say h'l': and h._:;, then
T [}
bl = ~f ﬁ - d_hk_. . (5.13)
k s dk dk
When the b, are obtained by the second method [see (4.62)],
we have
Lo & cos 21:1:9 (5.1%)
By = s & 1% £ :
-h 2xf T dhk £
Xk O, o (s}
= - 2 2kn-2 _9O
2fs fs S1n nfs + —gkcos 2k:tfs

hxf h sin 2knfB -2f il-jk-cos 2k:'tf-9-
ok i3 s dk £ )
To obtain a Martin-Graham filter of this type by the first method,

we simply select two Martin-Graham smoothing filters with transfer-
weight functions h'(t) «<—> H'(f) and h"(t) «<—> H"(f) and compute

the welights bi' by (5.13). . To use the second method, the appropriate
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Martin-Graham filter with h(t) €—> H(f) is selected and the weights
le; are computed by (5.14). These weights are used for the b in
(3.l1). Note that a facter of f, can be removed from the sum (3.41)

in a manner analogous to the first derivative case [see (5.7) and

(5.8)1.

1
L m(n) | w(e)
\

[}
A

-

1 ' L) LI

(a) Smoothing transfer functions (v) Band-pass: H'(f) - H'(%)

YH(£) ¥2(£)

t1 L [ i

(c) Derivative transfer functions (d) Ba.nd-pass derivative:
derived from H' and H". Yz(f) _ Yl(f)

Figure 5.2.

5.3 SMOOTHING AND SECOND DERIVATIVE FILTER

Letting n=2 in (L4.2), we find that the transfer function

of a filter which will smooth and find the second derivative is

Y3(£) = ~(2nt)?H(1) (5.15)
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b

where H(f) is any smoothing filter transfer function.
Putting n=2 in (L.3b), we find that the weights of the

filter in terms of the smoothing weights are

2 2 dahk
= fs 2
dk

Yk
1 -k
where h(t) €<—> H(f) and h, =% h(?—).
S S

Using the Martin-Graham smoothing weights given by (L.15) in

=L ana (5.16) gives

W
terms of T = T T
S s

f2 2yl
2 S 2 k 2.2 2 .
Ve =355 2h’rdkhk + —?—(l-lETdk ).23{(1’T sin 2wtk
k(l-thk ) s
+'r2 sin 2nt k)
c c
where yi is given by equation (5.2). This gives the weights to
be used in (3.41). Note that a factor of fi may be removed in
this case.

For k=0, using L'Hospital's rule gives

2
2 2 2 Lz 5,5
v, = T [éTd(TT+Tc) -3 (TT+T )i
For k = —2;3 L'Hospital's rule must be used to compute hk. [ See
2Td
Section 5.h.]
A constraint is developed in Appendix A to improve the fit of

the approximating transfer function at some specific frequency

ratio T.
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5., FIRST AND SECOND DERIVATIVE WEIGHTS FOR 1/2r AN INTEGER

In cases where T is such that 1/2'1’d is an integer, say m, then

» yi, ylm, yi, and y2m assume the indeterminate form O/O and

-
these weights must be computed by using L'Hospital's rule. The value
of h.m in this case is given by (L.17) and h_m is obtained from
h =h .
m -m

Application of L'Hospital's rule to the first derivative weight

expression yi when m = 1/2Td yields

yi = (fS/Z){ﬂTd(Td+2Tc)Sin(ﬂTc/Td) + (3T§/2)cos(ﬂTC/Td)} (5.19)

The first derivative weight function is odd, and hence we have

1_ .1
Y = Vg -

Applicatibn of L'Hospital's rule to the second derivative weight
expression yi = 1/21'd yields

2 2 2 .
v, = fS{BﬁTd(Td+2Tc)51n(ﬁTc/Td)

(5.20)
3,2 3
+ (7Td—2ﬂ [ Tch(Tc+Td)+Td/5] ) cos(nTc/Td)}

The second derivative weight function is even, and hence we have
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CHAPTER VI

FILTERS FOR INTEGRATION AND INTERPOLATION

6.0 INTEGRATING FILTERS

Let A exp(2nift) be a component of an input to a filter. Assuming
that the constant of integration is zero, the indefinite integral of
this component is (2nif)-lA exp(2rift). If this is to be the output
of the filter, then, using (5.5), we find that the transfer function

must be
X(f) = (27rif)-l (6.0)

Suppose that g(t) is the input to a filter, and that g(t)e—>G(f).
Letting k'(t) = g(t), assuming that the constant of integration is
zero, and that k(t) satisfies conditions sufficient for the Fourier

integral theorem to hold, we have
k(t)e————>(2nif)'lG(f). (6.1)
If we also smooth, we have
E(t)<————>(2nif)'lﬂ(f)a(f) (6.2)

where H(f) is the smoothing filter transfer function. From (6.2)
we see that the transfer function of a filter which will simultaneously

smooth and give the indefinite integral is

(=D (ey = (onie) tu(r) | (6.3)
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Note that the smoothed output, E(t), of the smoothing filter
acting alone on g(t) is the inverse transform of H(f)G(f),and

that

t -—
E(t) =f g(p)ap (6.L)
a,

where we assume k(a) = O.

For the transfer functions, Hj(f), j=1,2, ...,5, of the
smoothing filters discussed in Chapter IV, Y(-l)(f) has an
infinite diséontinuity at f=0. Hence, in order to approximate
Y(-l)(f) with a truncated Fourier series, we must modify Y(-l)(f)
on an interval containing zero. To avoiq some integrals which cannot
be evaluated in closed form, we shall consider only the case j=1,

i.e., an Ormsby type filter.

Let AT > 0 and

r f(Af)'2 s |£| <af ,
-1
£ , Af ST LT,
-1 -1
¥ )(f) = (2ni) < (6.5)

£t
T AF ) T, <t <%gp,

L © , |2l > £,
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and Y M (o£) = ¥0"1)(£) for £ < 0. See Figure 6.2

T T T
Af fc f&
FIGURE 6.2
R . R by AT
The weights in terms of the frequency ratio v = T T ra
£ S S
T = =, 1 = fg are
c T2 T f?
S S
y('l) B 1 cos 2nﬂTd sin 2nﬂTd
n T2 n - -2
21 Tdfs EKTdn
i Td cos 2nﬂTc . (sin 2nnTT - sin 2nﬂTc)
T n 2
c EnTcn

ZKTd [si (2nﬂTc) - si{ennt )] 5

d
where

(_l)k+lx(2k—l)
(2k-1)(2k-1)

X e}
o k=1

A definite integral

From (6.L4) we have

t+a

R(t+a) - K(t-a) = fé(s)aa,
t~a
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and by (6.2) and the First Shifting Theorem,

k(t+a) - k(t-a) «—> (21Tif)_lG( £)H(£) [exp(2riaf) exp(-2niaf)]

or

K(t+a) - E(t-a) «<—> S02588 p(e)g(r). (6.7)

Thus, if H(f) is a smoothing filter transfer function, the transfer
function of a filter which will simultaneously smooth and give the

integral of the input over [t-a,t+a] is

YDy = ﬂgﬂ—i"afﬂ(f). (6.8)
Let
B |t] <a
x(t) = o (6.9)
0 |t| >a,
then ~
x(t) «——> X(£) = imﬂ—fj‘a‘i . (6.10)

Applying the convolution theorem gives

(o)
Y(-l)(t) = fh(z)x(t-z)dz

-Q0

t+a

f h(z)dz | (6.11)
t

-a

a

f h(t-z)dz

~a

where y0 1 (4) «—s Y"1 (£) ana n(t) «—s> u(£).
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By (3.40), the weights of the corresponding filter are

%5 +a
S
yi’l) = %— k/q n(z)az. - (6.12)
s _
-n
= -a
fS

Choosing hl(t), the Ormsby smoothing filter weight function, we have

y('l)(t) _ t5s1n 2nf9t sin 2nfca-51n 2nth sin 2ﬁfTa)

RAE ﬁ(tz-a2
a(cos 2xf t cos 2nf a - cos 2xf, t cos 2nf. a)
- - c T T
n(te-a2
(6.13)
- fc[Si(E:tfc[t+a]) - Si(2:tfc[t-a.])]
+ fplsi(enfy[t+al) - Si(2nfT[t-a1)]} .
. . £ . b .
Using the frequency ratioT = ) letting a = 7 and computing
s s
the weights by (3.40), we have
y('l) _ 1 n(sin 2nnT sin Ench - sin 2nnTj sin 2ﬂTTb)
n -2 -, 2.2
b4 Tdfs (n b )
. ES““??§"2nnTc cos 2ﬂch - cos 2nxT,, cOs 2ﬂTTb)
(n2-b2)
(6.14)
- mrc[Si(EnTc[n+b]) - Si(2nTc[n—b])]
+

nTT[Si(2n¢T[n+b]) - Si(2ﬂTT[n-b])]:} .
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6.1 INTERPOLATING FILTERS

If g(t) is a function with Fourier transform G(f), then by

replacing to by -t in (1.21) we obtain
g(t+to)<%————>G(f)exp(EﬂitOf) (6.15)

From this and (3.5), we see that the transfer function of a filter

wnhommm;gtwo)is

G(f)exp(EﬂitOf)
G(T)

= exp(2ﬂitof)

Suppose that g(t) is band-limited, and let h(t)€<—>H(f) be the weight

and transfer functions of a filter, then
g(t+to)*h(t)<+———aG(f)exp(2nitof)H(f) (6.16)
But applying (1.21) to h(t) as we did to g(t) above, we have that
‘ h(t+to)<—————>H(f)exp(2ﬂitof). (6.17)
Hence
g(t)*h(t+to)<%————>G(f)exp(2ﬂitof)H(f) (6.18)
Comparing (6.16) and (6.18), we have

g(t)*h(t+to) = g(t+to)*h(t) (6.19)

From this we see that the operations of filtering and shifting the
output by a constant to can be accomplished by shifting the weight

function by to. Letting g(t) denote the smoothed output of the
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filter with weight function h(t), we have

a(t)

s(t)*h(t)

and

E(t+to) g(t)*h(t+t ) - (6.19)

NOW'E(t+tO) 1s the output of a filter with transfer function
exp(Eﬂitof)H(f), and from (6.17) we see that the corresponding weight

function is h(t+to). Then from (3.L0), the weights of the filter are
h = (l/fs)h(-n/fs + to) (6.20)

The corresponding digital filter has for its output

N
- Y Tg (6.21)

o
m n-m+n
n==N

where E& is an approximation of E(m/fs+to), that is, it is an inter-

polated value of g(t) between gm and —_

for 0 <t < 1/f .
o S

Note that (6.21) uses only the assumed known sample values g,
of the input g(t). The weights En are computed from the known weight
function. Also, it is important to note that the weights are no
longer either even or odd functions of n, that is, i n % En’ and
h_ P -h_.

Choosing h(t) to be the appropriate Martin-Graham weight function,
and using (6.20), we may compute weights to simultaneously smooth and

interpolate; smooth, differentiate, and interpolate; or band-pass

filter and interpolate.
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In the first two cases, if the cutoff frequency can be chosen

greater than the largest frequency f,. present in the data, that is,. if

=

£, ST, < fs/2, then choosing fy = fs/2 to maximize the roll-off

length, we obtain filters which interpolate for raw data values between
known data values in the first case, and which differentiate and inter-
polate without smoothing in the second case.

There is a relation between the weights for interpolating with
to > 0 ard the weights for interpolating with té = -to which is some-
times useful. Suppose the weight function h(t) of the original filter

is an even function of t. Then

En = (l/fs)h(—n/fs +t) = (1/fs)h(n/fS -t ) = ! (6.22)

where the E'n are the weights for interpolation with to replaced by

—to' When h—N’ h—N+l, o« e ey h_l, hO’ hl) e e e ey hN_l) h-N are

the weights for interpolating with to > 0, then the weights for inter-

. . _ —, = —, =
polating with to replaced by to are h—N hN’ h_N+l hN-l’ o e e ey

h'  =h =h .

T _ T Tt - T Tt
hl, =h), by =nh 1000 e Mgy SR g, By S hy

= =
-1 1’ hl =h,

O,

For h(t) an odd function of t, we obtain the relation
o= -h . (6.23)

As was the case previously, when using Martin-Graham filters for
filtering and interpclating, there are values of m, Tqs and to which
make the denominator of the weight expressions zero. In these cases,
the weights Em require special attention. Letting t_ = c:b/fS in the
weight expressions for these filters, we see that this will be true

when m is an integer such that
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m-® = 0, or m-® = X (l/ZTd) (6.24)

Using the Martin-Graham smoothing weight function (L.13), the
weight equation (6.20), and replacing t by @/fs, we find that the
weights for smoothing and interpolating are

co;Ean(n-Q)) 51n(ﬂ(2Tc+Td)(n-®))

h = 6.25)
n x(n-0)(1 - hr2(n-0)%) (

We now see that no special evaluation of this expression when (6.2li) holds
is necessary. That is, the values of m-® given in (6.2L) are those which
make the denominator of (6.25) zero and we have already determined what
the value of this expression is in this case. These are given by (L.16)

for m-® = 0 and by (L.17) for m-® = ¥ (l/ZTd). Hence, for m = @,

and for m = & * (l/2’|'d),

Em = (Td/2) COS(ﬂTC/Td).

Similar reasoning applies to the derivative filters. In Chapter VII, a
sample program and some tabulated results for smoothing and interpolation;
smoothing, first derivative, and interpolation; and smoothing, second
derivative, and interpolation are given. Values of ¢ used there are .25
and .5. This corresponds to interpolation for values one-quarter and
one-half the length of the sampling interval from known values, respec-
tively. A check for the special cases in (6.2Lh) is included in the

program.
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CHAPTER VII

APPLICATTIONS

7.0 EDITING AND DETERMINATION OF DIGITAL FILTER PARAMETERS.

In order to apply a digital filter to a set of data {gm} N
we assume that the data values are obtained by taking equally spaced
samples of & function g(t) which satisfies the three conditions of
gection 5.0. A variety of problems may arise from the methods used
to obtain the samples, and editing may be necessary. Common problems
are missing values and "bad" values, i.e., values grossly in error.
Since these can affect the output considerably, it is important to
replace them in some msnner. The common practice is to consider the
"bad" velues as missing values and then replace each missing value
by linear interpolation between the nearest data values on each
side of the missing value. (See fi1]).

Next, the following parameters must be determined:

A. The largest frequency, fB s Which is present in the data.
This is commonly found by visually determining the shortest
period in the data.

B. The sampling frequency, fs’ which must be at least EfB.

C. The cut-off frequency, fc’ which is chosen to be at least
&s great as the highest frequency of interest present in
the data.

D. The termination frequency, fT' This should be chosen such
that either, (1) no frequencies present in the data are in
the interval (fc,fT) or, (2) frequencies appearing in (fc,fT)
have no significant amplitude.

E. The value of N and hence the number of weights, 2N+1, of the
filter.
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From the above, the corresponding frequency ratios may be found

£ f
- L =S = L = &f

from v = 3= That is, 1, =g 1 =F> T3 F °
S S ] s

7.1 EMPIRICAL. ERROR BOUNDS FOR MARTIN-GRAHAM FILTERS

Empirical error bounds are found by recovering the digital
filter's transfer function, i.e., computing

N
H.N( fj ) = Zhn exp( 2natifj/fs)

n=-N

J=1,2, ««e,k, for various values of the parameters of Section T.O.
The recovered values are then compared with the designed or ideal
transfer function values at the fj' An expression for the error ¢
is then determined in terms of N and the other parameters.

The following error bounds were obtained by transfer function
recoveries and comparison with bounds obtained by the method of

section 4.).

I. Martin-Graham smoothing filter.
For a maximum error € [see (3.43)] of about .01, take
l.25fs
Ay

N> 1.25 _
Ta

This gives a maximum error of 1% (€ referred to unity) between
the actual transfer function and the designed transfer function.

(7.1)

Note that the error does not change with Ter Tg held constant.

The bound given by the method of Section 4.L was compared
with the results of computation with Tc values ranging from
.025 to .2, T

to 100. It was found to be about 5 times too large. Hence, in

values ranging from .021 to .11, and N values up

terms of the frequency ratio,

hN2T 2

1 a (7.2)
= log——75—7F7—
on thsz 1

€

where "log" denotes the natural logarithm.
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II. Martin-Grsham first derivetive filter.

Comparison of recovei'ies_ for £ > £y, i.e., where Yl( f)
is ideally zero, and the bound obtained by the method of Section
4.}y yielded, over the same range of frequencies ratio and N

values given above, the expression

lmz'r 2

f
€t = =2 [(1_+r.) log da_ 2 1. (7.3)
T e hNETd?-l nN(thng-l)

ITI. Martin-Graheam second derivative filter.

As above, the following expression was found

2 2
f hNZT T 4T
r ® S 2 2 d ¢ T
€" = —{a(+5+7) log + 1. (7.4)
2 c T thTd?-l N(hNETd?-l)

IV. Martin-Graham band-pass filters.

The error can be as much as the sum of the errors in the
low-pass filters from which the band-pass filter is derived (see
Ssection 4.6). Hence, in band-pass smoothing the error may be
twice that obtained with a low-pass smoothing filter having the
same roli-off length Af.

The values of €' given by (7.3) become too large for small Tg?
but are still useable for 7,=.021. The values of €" given by (7.4)
are too l:imla.ll for large 'r(1 and small 'rc. The actual value may be as
much as 3 €" for Ta values from .07 to .1l and L values of .025 to
.07. However, it is still useable. €' and €" are values for the error
on the rejection band |f| > £ (fr] > TT)
Ifl < fc (ITI < Tc) is essentially the same. For the first derivative
filter, the amplitude at fc ideally is 21‘tfc = 2nfs Tae For an error

of 1 % of 2xfc, we need

. The error on the pé.ss-band
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Comparing with (7.3), we see that N must be taken such that

2 2
Tq 2 (7.5)
(.08)ntr = {7 _+7,) log + > . 7.5
¢ ¢ T thsz-l KN(2N2Td -1)
For the second derivative, the amplitude at fc ideally 1is hnefc2=
hﬂgfsTce. Similar to the above, we find that for an error of 1%
2
of hnefc , we need to take N such that
2 2
LNy T 4T
2 2 2 d T
(.08)a°r 2 x(r  + 14°) log — +— (7-6)
wer Ba1 m(lr,c-1)
d d
7.2 SAMPLE PROGRAM AND RESULTS FOR THE MARTIN-GRAHAM SMOOTHING AND
DERIVATIVE FILTERS
When the data has been edited and the parameters of Section 7.0
have been determined, the filtering can be performed. The weights of
the filter are computed from the appropriate weight expression and
(3.40). If the data has a polynomial content, then these weights are
constrained appropriately (see Section L.5, Section 5.1, and Appendix
A). Finally, the output of the filter is computed using (3.L5).
As an example, we take as the input function
g(t) = a,cos 2nft,t + a,sin 2nf t + 85c0s 2nf3t + a8 (7.-7)
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Using the Martin-Graham filters, in this section we shall perform the
operations of smoothing; smoothing and finding the first derivatiye;

and smoothing and finding the second derivative. The same function will
be used in the next sections for interpolation and integration. The

time-sampled version of g(t) is

g, = &(n/t,) = a,cos 2xf n/f + a,

and going to the frequency ratio, T = f/fs, we have

. +
sin 2ﬂf2n/fs a_cos 2ﬂf3n/fs + 2)

3

= i + + a, . .
g = acos 2ﬂn¢l + a,sin 2T, a5cos 2:rn'r5 a), (7.8)

The following program was run in extended precision (10 digits)
on the IBM 1130 computer. The program is sectioned by comment cards
which state what each part of the program computes. Table 7.1 gives.
the frequencies used for the Vvarious runs. In each run, the input

component with frequency f, is to be removed by the filters.

3
Table 7.2 gives the frequency ratios, coefficients of the terms in
(7.8), coefficients of the terms of the desired output, and the

parameter values for each run. The value of N used, and hence the
number of weights for each run, is given by the last two digits in

the run number. That is, Run 2.20 reads, 'Run 2 with N = 20". The

symbolism selected for the program is as follows:

FS: The sampling rate fs.

HO: The center smoothing weight, ho'

DDHO: The center smoothing and second derivative weight, yi.
H(I): The smoothing weights ho, 1 £ o.

DH(I): The smoothing and first derivative weights yi, i # 0.

DDH(I): The smoothing and second derivative weights y?, i # o.
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TF1l: The recovered transfer function for smoothing.

TF2: The recovered transfer function for smoothing and the first
derivative (divided by 2x).

TF%: The recovered transfer function for smoothing and the second
derivative (divided by hﬂe).

Z(I): The input samples g

R(I): The desired smoothed output (used for headings for both
desired and actual outputs).

DR(I): The desired smoothed first derivative output (used for

headings for both desired and actual outputs).
DIR(I): The desired smoothed second derivative output (used for

headings for both desired and actual outputs).

The 8y Tos etc. are denoted by AA, RA, etc., AB, RB, etc. in the program.

The following weight properties are used in the program:
1) Smoothing: h =h,
. . . 1 1
2) First derivative: y n = Yo
. - 2 2
3) Second derivative: Y_, =V,
The results for each run follow the program. In each run, one term
of the input is to be removed by filtering. The desired output is ob-
tained by taking the coefficient of that term in (7.8) to be zero.
Some of the frequencies were chosen near cut-off and termination of the
filters. This is where the largest error is obtained in the transfer
functions. ©See Figure 7.l and Figure 7.2 for graphs of the recovered
transfer functions, the input, and the smoothing filter output. The
output of the smoothing filter is so near the desired output that they

coincide in the scale of the figure.

Tabular values for Run 3.20, Run L1.30 and Run 5.30 are used in the
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next section on interpolation and are not used in this section. The

values for Run 1.20 and Run 2.30 are used in both the sections.

FREQ. RUN 1.20 RUN 2.30 RUN 3.20 RUN L.30 RUN 5.30

fl 5 5 5 5 )
£, .9 2.0 .9 2.0 .9
f5 2.0 h.o 2.0 L.o 2.0
£ 10.0 10.0 10.0 10.0 10.0
£, 1.0 2.0 1.0 2.0 1.0
Af .6 .6 .6 .6 A
£ 1.6 2.6 1.6 2.6 1.k
Table 7.1
PROGRAM SYMBOLS AND PARAMETER VALUES
FREQ. PROGRAM PARAMETER VALUES

RATIO SYMBOLS RUN 1.20 RUN 2.30 RUN 3.20 RUN L.30 RUN 5.30

e TC .1 .2 1 .2 .1
Tp RT .16 .26 .16 .26 L1l
T4 D .06 .06 .06 .06 .0k
T, RA .05 .05 .05 .05 .05
To RB .09 .2 .09 .2 .09
Ts RC .2 A .2 A .2
a, AA 1.0 1.0 1.0 1.0 1.0
a, AB 1.0 2.0 2.0 2.0 1.0
8 AC .5 1.5 .5 1.5 .5
8 AD 5 1.0 5 1.0 5
BA* 1.0 1.0 1.0 1.0 1.0
BB 1.0 2.0 1.0 2.0 1.0
BC 0.0 0.0 0.0 0.0 0.0
BD .5 1.0 .5 1.0 5
) TX .25 .25 .5 .5 .5
Table 7.2

*BA, BB, BC, and BD are the coefficients for the desired outputs.
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SAMPLE PROGRAM» WEIGHTSy» RECOVERYs FILTERING OF CATA»
SMOOTHINGs FIRST AND SECOND DERIVATIVES
IBM 1130 FORTRAN IV LANGUAGE
DIMENSION H(30)sDH(30)sDDH(30)s2(101)
DIMENSION R(40)sDR(40)sDDR(40)
FORMAT (4F10e490)
FORMAT (A4 A4L)
FORMAT (1H195X9A49sA4930H RECOVERED TRANSFER FUNCTIONS/)
FORMAT(5X 9 1HF 9 7TX9s3HTF1913Xs3HTF2913X93HTF3)
FORMAT(/////6XsA4sAby28H INPUT ON RANGE OF INTEREST/)
FORMAT(19Xs1HT s 8X9S5HZI(T))
FORMAT(1H195X9A49A4916H DESIRED QUTPUT/)
FORMAT(5Xs1HT 97X 94HR(T) 911X 95HDRIT ) s 10X 96HDDRI(T))
FORMAT(1H1 95X sA49A4915H ACTUAL OUTPUT/)
FORVMAT(1XsFT7e393E1547)
FORMAT(16XsF7e39E1567)
P=3e¢14159

READ PROBLEM PARAMETEKS

READ(292) RUNXNUM
READ(291) XNsTC»s»TD
READ(291) RASRBIRCsFS
READ(291) AASAB»ACHAD
READ(2s1) BAsEB#BCHBD
N=XN

COMPUTATION OF THE UNCONSTRAINED WEIGHTS
THE FACTORS =FS AND FS*¥%#2 OF THE FIRST AND SECOND
DERIVATIVE WEIGHTS wWILL BE INTRODUCED LATER
COMPUTATION OF THE CENTER WEIGHTS

HO=2 ¢ ¥TC+TD

RT=TC+TD

DDHO=8 ¢ # ( TO#3# 2% (RT+TC ) =P *# 2% (RT*3#3+TC*3%3) /64 )
COMPUTATION OF THE REMAINING WEIGHTS

DO 13 I=1sN

X=1

H{I)=SIN{HO¥X%®P )/ (X*P)

HII)=H(I ) #¥COS(TO*X*¥P) /{1 e=4 o *TDHK2XXH#H#2)
DH{I)=RT*COS(2¢ #RTHX%P I +TCXCOS (24 #TCHX*P)
DHUI)=DH{I)=F(T)#{]e=12*TDOX#*2%X*%*2)

DHUII=DH(I) /(X#(le=4e#TD®#2%X%%2))

DOH(T)==m2 o ¥DH (I ) %* (1 e=12 ¢ ¥ TDO* R 2K X¥#2 ) +24 ¢ ¥ TD# %23 X%¥MH ()
DOH(IN=DDI'(I) =2 ¢ #PHRTCH*2XSIN(2 ¢ *TCHP*X)
DOH(II=DOH(I) =2 ¢ ¥PHRT ¥ ¥2*kSIN(2 e #RT*P%X)
DDHII)=DDHII ) /(X* (1 ambo*TDHR2%XH%2) )

COMPUTATION OF CONSTRAINED SHMCOTHING wkIGHTS
DERIVATIVE WEIGHTS ARE NOT CONSTRAINED
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NnNO

14

15

16
17
18

19
20

21
22

23
24

25

SA=0

DO 14 I=1sN
SA=S5A+H(I)

FN=2%N+1

SA=1le=(HO+24%*SA)

SA=SA/FN

DO 15 I=1sN
H{I)=H(I}+SA

HO=HO+SA

RECOVERY OF ALL TRANSFER FUNCTIONS

WRITE(3s3)

WRITE{(394)
ZA=100e*TC=14

2B=ZA+64

2C=28+100e%*TD

2D=2C+6

DO 26 K=13957

TF1=0e
TF2=0e
TF3=0,
X=K
IF{X=2A)
Y=K=-1
=401%Y
GO TO 24
IF(X=~ZB}
Y=Y+4005
GO TO 24
IF(X=2C)
Y=Y+4C1l
GO TO 24
I[F(X=2D)
Y=Y+4005
GO TO 24
Y=¥Y++01
CONT INUE

16517917

18419919

20921921

22923923

DO 25 I=1»N

X=1

X=2 0 ¥XXP*Y
TF1=TFL4+2e*H({ ) #COS(X)

TF2=TF2+2¢*¥DHI(T ) *#SIN(X)
TF3=TF3+2¢%DDH(I)*¥COS(X)
TFl=HO+TF1

RUN ¢ XNUM

e

[aNaNa!

TF2==FS*TF2/(2«¢#P)
TF3=FS*# 2% (DDHO+TF3 )/ (4e #P%%2)
Y1i=sY*FS
WRITE(35s10) Y1lsTFLlsTF2sTF3
GENERATION OF SAMPLE INPUT DATA

MA=N+1
M=2%¥N+40
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27

28

29

30

DO 27 I=1sM

T=I=MA

CA=COS (2 o ¥P*RA* T

S= SIN{2+%P*®RB*T)
CC=COS(2 ¢ #P*RC*T)
Z{1)=AAXCA+AB*S+AC*CC+AD

WRITE INPUT ON THE RANGE OF INTEREST

WRITE(395) RUN» XNUM
WRITE(3s6)

DO 28 I=1s40

T=1=1

Y=T/FS

J=1+20

WRITE(3911) YeZ(J)

COMPUTATION OF DESIRED OUTPUTS

WRITE(3s7) RUNsXNUM
WRITE(3+8)

DO 29 I=1s40

T=1~-1

CA=COS (2o #¥P%RA*T)
S=SIN(2¢#P*RB*T)
CC=COS(2 4 #P#RCH*T)
R{I)=BA*CA+BB#S+BC*CC+BD

DDRIT)==4e* (PHFS) ##23 (BAHRA¥*2¥CA+BBHREB##2¥5+BCHRCH##2#C(C)

CA=SIN(2 ¢ #*P%RA¥T)
S= COS(2¢#P*RB*T)
CC=SIN(Z2 e *¥P*RCH*T)

DR(I)==2 ¢ #P%F St {BAXRA*CA~BB*RB*S+BC#RC*CC)

Y=T/FS
WRITE(3910) YsR{I)sDR(I}»DDRI(I)

COMPUTATION OF THE ACTUAL QUTPUT

WRITE(339) RUN»XNUM

WRITE(3s8})

DO 31 K=1ly40

MB=K~=1

MC=N+1

SA=0a

SB=0,

$C=O.

T=MB

T=T/FS

DO 30 I=1sN

KA=MC~1

KB=1+MB

KC=iAC+I+MB
SA=SA+H(KA)*Z(KB)+H(I ) *¥Z (KC)
SB=SB=DH(KAI*Z(KB)+DH(I)*Z(KC)
SC=SC+DDH(KA) *¥Z (KB)+DDH( T )*Z(KC)
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31

32

KD=MC+MB
SA=HO*Z (KD) +SA

THE FACTORS =FS AND FS¥#2 ARE INTRODUCED HERE
SB==FS%5B

SC=FS¥#2# (DDHO*Z (KD ) +SC)
WRITE{(3s10) TsSA»SBSC

GO TO 12
CALL EXIT
END
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RUN

F
0e«000
0e¢100
06200
04300
04400
0e500
0600
0700
0e750
06800
04850
06900
06950
1000
16100
14200
14300
1,400
1500
14600
le¢650
16700
le750
1.800
1,850
14900
24000
2100
24200
24300
26400
24500
2600
24700
24800
2¢900
34000
3.100
30200
34300
34400
34500
34600
36700
34800
34900
440090
44100
44200
44300
44400
44500
44600

1.20

TF1
0+¢1GO00COE 01
0e9979708E 00
0e9951461E 00
09968977E 00
041002811E 01
Ce1005624E 01
041000225E 01
0+9928568E 00
0e9926648E 00
0e9962421E 0O
041002821E 01
0¢1009538E C1
0elO11476E 01
0+41002304E 01
0e9256323E 00
0e¢7502907E CO
0e5007748E QO
0e2500291E 00
0e7292437E-01

~003242715£=02
=0el137795E=01
~0e8413781E-02
=0el139287E=02
0e5260366E=02
0e7969893E=02
046575732E=02
=042177529E=02
=0e5887906E=02
=0e5841164E=-03
0e4631496E-=02
0e2607105E~02
=042762178E=02
=~0e363136CE=02
Qe6433748E=C3
043587548E=02
0el2€61190E=C2
=0e2625765E=02
=0e2540651E=02
0e1093053E=0D2
062954239E=02
0e5538661E=03
=02492955E-02
=0elB872954E=02
Cel361831E=02
0e2530092E=02
0e7613562E=04
=042406083E=02
=0¢1394519E~02
0el572296E=02
0e2227681lE=~02
=0e3086174E~03
=0e2359755E=~02
=041066163E=02

TF2
0¢00C0000E 00
0s1064420E 00
0e2027441E 00
0s2944890E 00
0e3948321E 090
0e5038B771E 00
0+6070451E 00
0¢6978028E 00
0¢7428995E 00
0e7916221E 00
0e8453967TE 00
049027563E 00
0¢9585889E 00
041004446E 01
061025274E 01
0e9021662E 00
046448855E 00
0e3447629E 00
Cell26013E 00
0el$52202E=02

~0e41382274E~01
~0el354452E=01
~0e¢5759337E=02
0e2660113E=02
Ce7606103E=~02
Ce7890945E~C2
=0e3734135E=C4
~045253134E=02
-041658775E=-02
0e3213084E=02
0e2442886E=02
~0elt78645E=-02
~0e2490295E=Q2
0e1206043E=-03
0e2025167E=02
Ca7712G17E=03
~0e1304567E=G2
—-Ce1199737E=C2
Je5405387E=03
0el2257T7TT7E=02
Ce96T70234E=04
~0e9674295E=-03
“0e4999757E=C3
Ce5857003E=03
De664T7356E=03
~0e20484T72E=~013
~0e0G350356E=03
~0e9081311E=04
0e4B840C5GE=03
Ce2544T710E=03
~0e3063226E=03
~0e3104730E-03
Gel595017E=03

141

RECOVERED TRANSFER FUNCTIONS

TF3
=0e¢1311312E=02
-0¢1094588E=01
=043935141E=01
=-048744310E=01
-041586992E 00
-042532428E 00
~0e3641147E 00
=044871102E 00
-0e5559792E 00
-046327757E 00
=047189744E 00
-0e48136282E 00
-049120918E 00
-041005558E 01
=0s1127162E 01
-0+1081105E 01
-048382299E 00
~044841259E 00
=0e1697427E 00
=042021546E=02

0e2441104E=01
0e2445B817E=01
0el1072304E=~01
-0¢5231769E~02
~041545016E=01
~0e1675595E=01
=044022046E=03
0e1261440E=~01
0et961693E=02
~0.8373012E=02
=0e77435T6E=02
0e3784080E=02
UeB8551128E~02
CeTVUB0655E~03
~0e7317515E=02
=0e4210880E=02
0etb60UBLBE=D2
0e6161725E~02
~0e1195917FE~02
~0e6406264E=02
-042188057E=02
Det918593E=02
Oelt641884E=02
~0e2248612E~02
~0e5593535E=02
~0e7416088E=C3
Ue5042111E=02
0e3403408E=02
-043103943E~02
~0e4999321E=02
0e3360198E=03
De5054315E=02
0e2348410E=02



44700 Cel772230E=32

Qe3071723E=03 =~0e3751266E=02
46800 0Qe1934118E=02 =~Ce5821355E=04 =044346328E~02
041405878E=02

44900 =0665486489E=C3 =042841886E=~03
56000 =0¢2343314E=C2 =Cs1845173E~07

RUN 1e290

INPUT ON

T
Je300
041300
0e¢200
0300
0«400
05060
Q0e6U0
04700
04800
06900
1000
1100
1.200
1.300
1.400
16500
14600
le700
1,800
1900
2000
2¢100
24200
24300
2400
2500
24600
2¢700
24800
2¢900
3¢000
34100
34200
34300
34400
34500
34600
34700
34800
34900

RANGE OF INTEREST

ZI(T)
G+20C0COCE 01
042141391E 01
041809336E 01
Cel675391E 01
041734038E 01
Ce1309020E 01
GeG680893E=01

-041221256E 01

-041695813E 01

-041226329E 01

~045877891E 00

~0+3593391E 00

~042317749E 00
043840030E 00
0413435C8E 01
041809017E 01
041331661E 01
044959050E 00
042159592E 00
046369729E 00
0+1048940E 01
049681456E 00
0e7791751E 00
041109043E 01
041807841E 01
0+2000006E 01
0e1189845E 01

~046648854E=01

~048388498E 00

-049339736E 00

~049510520E 00

~041265121E 01

-041398078E 01

-046797079E 00
0e7135751E 00
041808997E 01
041961560E 01
041559595€ 01
041386260E 01
0¢1542770E 01
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RUN 120 DESIRED

T RIT)H
06000 0e1500000E 01
0e100 041986882E O1
0e200 0e2213843E 01
0e300 062079900E 01
06400 0Qel579532E 01
06500 Q88090205E 0O
06600 =065770258E=01
0e700 =0 e8l6750CE 00
06800 =0,1291302E 01
0e900 =0¢1380833E 01
ls000 =~=0el087789E 01
1100 =0e5138531E 00
16200 0e1727297E QO
l¢300 0e7885156E 00
164400 041189006E 01
le500 061309017E 01
l¢600 0ell77144E 01
le700 069004082E 0O
1800 0e6244733E 00
1,900 064824740E 00
24000 0e5489405E 00
24100 0e8B1362865%E 00
2¢200 0e1183676E 01
24300 041513559E 01
2¢400 0e1653344E 01
24500 041500006k 01
24600 001035324E 01
2¢700 03380115E 0O
24800 =044343325E 00
2¢900 =041088467E 01
34000 =041451052E 01
346100 =0el4l9645E 01
36200 =09935802E QO
3¢300 =0e2751891E 00
34400 0e5590838E 00
34500 001308997E 01
3¢600 061807033E 01
34700 0e1964092E 01
34800 0+41790780E 01
34900 041388281lE 01

QUTPUT

DR(T)
0e5654862E 01
0e3803755E 01
0e5611491E 0O

=063250332E 01
=04¢6592364E 01
=048519679E 01
=0+8465039E 01
=0e6412636E 01
~0e2906222E 01

0s1110859E 01

0e4574855E 01
Ce6614497E 01
Ce6801981E 01
0e5265874E 01
0e2632792E 01
-0+1822216E QO
=0e2269908E 01
=0e3013099E 01
=042275657E O1
=044355370E 00
Del747413E 01
0e¢3386321E 01
0e3763698E 01
0e2575110E C1
Ce&4225793E=01
-~0e3141522E 01
~-C+6017803E 01
=0e7658254E Ol
=“0¢7456880E 01
~045328023E 01
~0e1747550E 01
0e2377005E 01
045968716E 01
0eB096265E 01
0e8245612E 01
0e6465511E 01
0e63343007E 01
~0e1825450E 00
=043108737E 01
=0e4672874E 01
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DDR(T)
~049869587E
~04¢2652090E
-043691872E
~0¢3752652E
~0e2768897E
~0e9881665E
0e1100223E
0e2911167E
0¢3939568E
0e3911847E
0e2866559E
0e1139459E
=0e7420417E
~0e2222074E
~0e288644TE
~-0e¢2587040E
—0e1482174E
0e1905620E
0e1390524E
0e2158624E
0¢2054288E
0e1099689E
~0e3976525E
~0e1941627E
=0¢3004919E
-0e3197752E
~0e2394987E
~047814574E
0¢1199203E
062976937E
0e4028182E
0e4035951E
0e2987515E
0e1179374E
=048721251E
=042586990E
=043496410E
=0e¢3382345E
~0¢2339037E
=047379217E

01
02
02
02
02
01
02
02
02
02
02
02
o1
02
02
02
02
00
02
02
02
02
01l
02
02

02
01
02
02
02
02
02
02
01
02
02
02
Ve
01



RUN 1420
T R(T)
06000 Q41504535 O1.
0100 0Q61997006E 01
04200 0e2227905€ 01
0e300 0e2093550E 01
06400 0el588283E 01
0e500 048108793E 00
0e600 =0s6214910E=01
0700 =0e8261282E 0QOQ
0e800 =0al1304341E 01
0e900 =01395387E 01
14000 ~041100108E 01
1,100 =0e5201376E GO
16200 0Qe1736555E QO
14300 0e7944491E 00
14400 041196451E O1
1e500 0s1315645E 01
16600 041182057E 01
le700 0e9028076E 00
14800 0e6233748E 00
16900 0e4782478E 00
24000 0e5444044E 00
24100 048125589E 00
24200 061187912E 01
24300 0e1521807E 01
2e400 041662799E 01
24500 041508456E 01
26600 041041303E 01
24700 03396478E 00
2¢800 =044391971E 00
24900 =061100232E 01

34000
36100
34200
34300
34400
34500
34600
34700
34800
3,900

=-Cs1466836E 01
=0el434570E 01
=-0«1003779E 01
=0e2794016E 00
045605205E OC
0el315625E O1
0el817954E 01
Qel976637E Ol
0+1800806E C1
0e1392695E 01

ACTUAL OQUTPRUT

DR(T)
045672180E 01
043810961E 01
045542731E 00

-043272280E 01
~0e6526684E 01
~0+8560511E 01
-048504871E 01
-046444131E 01
-042923855E 01
041109594E 01
0e4588866E 01
0s6639421E 01
0+6831545E 01
0e5293857E 01
0e2654761E 01
-041680404E 00
~042262730E 01
~043010334E 01
~042274032E 01
-044324276E 00
0e1752765E 01
043392249E 01
043766631E 01
0.2571003E 01
042825790E=01
~043165883E 01
-046050140E 01
-0.7693564E 01
-047488450E 01
-Ce5349008E 01
~Ce1752902E 01
0.2388952E 01
045995729E 01
0.8132917E 01
048284772E C1
045500052E 01
043367375E 01
-041711107E 00
-043109664E 01
-0 44682742E 01
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DDR(T)
-041003143E
-042674775E
-043717136E
=0¢3776334E
~042786724E
-049959752E

0e11049C8E
0e2927188E
043962049E
0¢3934507E
0.2684398E
0e1149700E
=047405311E
-042229047E
~042899620E
-042602011E
-0¢1494237E
0e1226907E
041388026E
042157468E
0e2051726E
041093810E
=044081605E
-041957196kL
-043023803E
~043215459E
-042405959E
-0,7819777E
041209409E
062995409E
0e4051224E
0e4059167E
0+3005731E
0e1187637E
“0e8762754E
~042601960E
=043517496E
-043404369E
~042358241E
-0e7520319E

02
02
02
02
02
01
02
02
02
02
02
Q2
01
02
02
02
02
00
02
02
Q2
02
01
02
0z
02
02
Cc1
02
02
02
02
02
02
01
02
02
02
32
01




RUN 2630
F TF1
QeU0U 0410C000CE 01
Qel00 Qe9990799E CO
0200 0e9993164E 00
06300 041001067E 01
06400 0e¢1l000089E 01
0500 D49988623E 00
0600 . 041000642E 01
Ce700C 0e41000775E O1
0e800 0Q0e9988035E 00
06900 069999858E 00
16000 041001316E 01
LelO0 0e9990952E 00
16200 049991569E 00
l¢300 0e1001651E 01
le400 09997751E J0
1le500 De9981l467E 00
14600 041001773E 01
le720 041001004E 01
le750 049981318E 00
leB800 0Q49964056E 00
14850 04¢9980397E 00
16900 0Q41002675E C1
le950 041006047E 01
20000 061000527E 01
2¢100 0e9296782E Q0
24200 0Qe7532773E 00
24300 0e5003579E 00
20400 042464820E 00
264500 046976558E=01
24600 0e8834037E=04
20650 =0e5385111E-02
2¢700 =0e2528228E=-02
20750 0s1466907E=02
2.800 002877506E"‘02
24850 (0e1536750E=02
24900 =0 e6649908E=03
34000 =Q041271256E-02
34100 0el1174813E-02
34200 0e1751021E=03
3e300 =069239686E=03
3¢400 0e4036508E=03
34500 0e4551198E=03
34600 =0e5630087E-03
34700 ~03001862E~04
34800 0e4488020E=03
34900 =042276487E=03
44000 =0e2248208E-03
44100 042968816E=03
46200 Q01809746E~C4
44300 =042370779E=03
46400 041030652E=03
44500 0e1345563E=03
44600 =0e1337616E-03

TF2
0+GOV0000E €O
0¢1001930E 00
0e1997105E 00
Ce3001236E 00
0e4003138E 00
044994860E 00
046000685E 00
047006694E 00
0¢7992988BE GO
0e8996904E 00
0+1001210E 01
041099378E 01
0e1198866E 01
0¢1301818E 01
041400028E 01
Cel497367E 01
0s1602381E 01
0e1701849E 01
0e1747196E 01
0s1793940E 01
UelB46379E 01
0e1904661E 01
0e1961278E 01
0+2000879E 01
0s1952890E 01
041657016E 01
041150323E 01
0e5920952E 00
0e1745989E 00

~044770605E~03

~0e1465639E-01
~046543208E-02
0e4777730E=02
048649288E=02
0e4309431E=02
~042629067E-02
~043980459E=02
0e4522064E=02
0e1374801E=03
~043733852E=02
042293624E=02
041702539E-02

-0¢3119310E-02
0e5204254E~03
0e2477033E-02

~042106855E=02

=048951134E=03.

0e2569953E=02
~0e8623488E~03
=~041864251E~-02
Ce2077T714E=C2
0e4006935E=03
=0e2291661E=-02
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RECOVERED TRANSFER FUNCTIONS

TF3
~0e5835911E~02
=0+8069360E=02
=0e3547989E~01
~Js9505551E=01
=0e1611912E 00
=0s2439548E 00
=043628578E 00
=0e¢4943077E 00
=0e6339328E 00
=048095680E 00
=-041006855E 01
=0e1205643E 01
=0e¢1435493E 01
=041698287E 01
=0e1959239E 01
=0e2240645E 01
=0e2568333E 01
=042895519E 01
=043054255E 01
=043222829E 01
-0e3411917E 01
=-0e3620667E 01
=0e3830481lE 01
=Ve4U06828E 01
=0¢4095702E 01
=0e3643926EL 01
~042652270E 01
-0e1418133E 01
=0e4318729E 00
=0e4970335E=02

0e3295904E=01
0el714038E=01
=0e7799526E=02
=0e1751051E-01
=~0e9930184E=02
0e3551889E=02
0e7884209E=02
=0e6962965E=02
=0elV50756E~02
0e5517542E=02
=0e2429389E=02
=0e2622343E=02
0e3316056E=02
0e2529160E=04
=0e2605461E=02
0¢1393238E-02
Oell68418E~02
=0e1730209E~02
0e5417549E~04
041318255E=02
~0e6394788E=03
=0e6029474E=-03
Oe7678554E=03



44700
44800
44900
54000

RUN 2430

0e¢l1197832E=03
0e9760027E=05 =0e2141209E-02 ~043583842E~04
=0¢1094264E=03 =041822910E=-06

=0e¢5112099E=04 041153040E=02

0el630979E~C3

0elé65714E=02 =0e5972868E=03

Oet4546T70E=03

INPUT ON RANGE OF INTEREST

T
04000
061C0
06200
0e300
Ce400
0500
0e600
06720
06800
04900
1000
14100
14200
1300
14400
14500
1.600
147090
1.800
1.500
24000
2¢100
24200
24300
2e400
2500
24600
26700
24800
2900
3,000
3,100
36200
36300
34400
34500
34500
34700
36500
3e¢9C0

Z1(T)
0«1500021E
Ce73752G8E
041830090E

-042998620E
~Ce2424638E
0e2500011E
Cel997600E
0e3226885E
0e1096962E
~0e1164579E
Ce3500000€E
0e2639645E
0e3448110E
0e8757551E
=041806630E
0e2499990E
0¢1379579E
042051303E
~045210227E
-043066717E
0s1499978E
0e7375435E
Ce1830061E
-0e2997712E
~0e2424694E
0e2499964E
Uel997619E
0e3226855E
0el097054E
~0¢1164631E
0e3499957E
0e2639671E
Ce3448087E
CeB8758545E
-0¢1806676E
Cel2499953E
Cel379608E
0e2351281E
=-045209245E
=0 ¢3066TE6E
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01

00
01
00
01
c1
01
01
01
0l
Ol
01l
01
00
1l
ol
01
Cl
43¢
91
01
00
01
00
0l
01
01
Ol
o1
01
01
o

01
00
21
01
01
01
09
01



RUN 2430 DESIRED

T RIT)
0e000 042000000E C1
0e¢l00 0e3853168E 01
0e200 (0e¢2984591E 01
0e300 QDe4122205E 00
Oe400 =0¢5930976E CO
0e500 0e9999907E Q0
De620 0e2593093E Q1
Ve700 041587798E 01
06800 =069845724E 00
De¢900 =0el853174E 01
1000 =Ce2122949E-C4
16100 0e1951048E 01
1,200 041366572E 01
le300 =Ca7633362E 00
le400 =041211142E O1
le500 049999641E 00
le600 0e¢3211115E 01
le700 002763381lE 01
le80C 0e6334746E 00
16900 044892945E=01
26000 06l999957E 01
2¢100 0e3853157E 01
26200 0e2984628E Q01
2¢300 044122592E 00
24400 =0e5931057E 0O
24500 0¢9999535E 00
24600 042593085E 01
24700 041587837E 01
2¢800 =0e9845349E 00
2¢900 =0el1l853186E 01
36000 =046375927E~04
34100 041951033E 01
36200 Q0el366603E 01
3e¢300 =0e7633061E 00
36400 =0e1211160E 01
36500 069999163E 00
36600 0e3211097E 01
3700 062763411€E 01
3800 0e6335058E 00
36900 0Qe4891466E=01

OUTPUT

DRIT)
0e2513272E
" Ceb6T95659E
=~0e2217934E
=0e22387444E
0e¢4778507E
042199113E
0«4778758E
=0¢2287429E
~04¢2217950E
0e6795397E
0e2513271E
0e8737512E
-0e1848603E
=C0el779140E
0e1075390E
0e2827431E
0el075467E
=0e1779092E
=Cel848648E
O0eB8736775E
0e¢2513273E
0+6796182E
=0e2217901E
=0 e2287474E
0e4778004E

0e¢2199113E .

044779262E
=0e2287398E
~0e2217983E
0e¢6794873E
0e2513269E
0e8738004E
=0el848573E
=041779173E
0e¢1075339E
042827430E
0el075519E
=0es1779059E
~0s1848678E
0eB8736282E

147

DDR(T)
~0e9869587E 01
-=0e3097555E 03
=0e1936235E 03

Cel798363E 03
042973196E 03
0e1663130E~02
~0e2973186E 03
~0e1798390E 03
041936208E 03
0e3097566E 03
049872940E 01
=042909814E 03
=~041776569E 03
0e1914360F 03
0e3034205E 03
0+5073595E=02
-043034173E 03
~0s1914441E 03
0e1776488E 03
0e2909845E 03
~049862882E 01
-043097535E 03
~0¢19362590E 03
0s1798308E 03
0s42973217E 03
0e8317557E~02
~0e2973166E 03
~0e1798445E 03
0s1936153E 03
0¢3097586E 03
0e9879656E 01
=0+29C9793E 03
-041776623E 03
0e1914306E 03
0e3034226E 03
041183093E=01
~0¢3034151E 03
~0s1914494E 03
0e1776434E 03
0e2909866E 03



RUN

T
0000
04100
0e200
0e300
De400
04500
06600
0e700
0800
06900
1.000
14100
1,200
14300
1.400
1,500
14600
l1e¢700
1,800
1900
24000
24100
24200
24300
24400
24500
24600
24700
2¢800
24900
3000
34100
34200
34300
34400
34500
365600
34700
34800
34900

2430

R(T)
0e¢1998525E 01
0e3853364E 01
0e2984187E 01
0+¢4108270E OO

=0e65941806E 0O
0e9996534E 00
0e2594722E O1
0e¢l1588983E 01

-0e9843770E 00

=0¢1852824E 01
0e7791440E~03
0e1953407E 01
0e1368009E 01

~0e7633923E 0O

=-0e1211522E 01
049996268E 00
0e3212040E 01
0¢2763229E 01
0e6318294E 00
0e4T711614E=-01
0e¢1998482E 01
03853352 01
0e2984224E 01
0e4108657E QGO

~045941886E 00
069996162E 0O
0e2594714E 01
0el1l589022E 01

=049843394E 00

-041852835E 01
0e7366263E=03
0e1953392E 01
0¢1368040E 01

=0e7633623E 00

=~0¢1211540E 01
0e9995790E 00
0632120228 01
0¢2763259E 01
0e6318605E Q0
0e4710128E-01

ACTUAL OUTPUT

DR(T)
0e2514377E
0¢6805032E

~0e2219441E
~042287275E
Ce4780036E
042200541E
0e4790205E
—042288864E
-042217853E
0e6794853E
Ce2514376E
Ce8744890E
-04¢1850490E
=041779494E
041074929E
0¢2828213E
041075998E
-0e1781050E
~0¢1848930E
0e8734235E
0e2514379E
0e6805556E
~042219408E
-~042287305E
0e4779534E
0¢2200541E
0¢4790708E
~042288834E
-042217886E
0e6794329E
0e2514375E
0e8745383E
~0+1850460E
~0e1779526E
0e1074878E
0.2828213E
0¢1076049E
-0.1781018E
~0e1848960E
048733 744E
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ce
c1l
02
02
Cl
02
01
02
02
ol
02
01
02
02
02

02
02
02

C1

02
01
02
02
01
02
01
02
02
01
02
01
o2
02
02
02
o2
02
02
01

DOR(T)
-0¢9792138E
~043103277E
~0e1939563E

0¢1800844E
0e2976198E
=0e1595349E
=0¢2981915E
=0¢1805052E
0e1935356E
0e3097560E
0e9473095E
=042920075E
=0e1783759E
Ce1914036E
0¢3035731E
-0e1561212E
=0e3041426E
~0¢1918297E
0el779497E
0e2914379E
=0e9785417E
=-0¢3103256E
~041939618E
0e1800790E
0e2976218E
-041528632E
=0s2981894E
~0s1805107E
0e19353C1E
0«3097580E
0e9479817E
-062920054E
-041783813E
0e1913982E
0e3035752E
~0e1493541E
=043041405E
=0s1918351E
0e1779443E
0e2914400E

01
03
03
G3
03
00
03
03
03
03
01
03
03
03
03

03
03
03
03
01
03
03
03
03
co
03
03
03
03
01
03
03
03
03
00
03
03
03
03
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7.3 SAMPLE PROGRAM AND RESULTS FOR THE MARTIN-GRAHAM INTERPOLATING

FILTERS

The program of the preceding section yields & program for inter-

polation when suitably modified. The necessary changes made to obtain

the program in this section include:

1.

Provision has been made for the special cases given in (6.24).
However, the weight subscript values which satisfy m-0¢ = il/ETd
are computed externally and read into the program. This is
done because of errors introduced by truncation in the computer
which cause m-Qil/ETd to be non-zero when it should be zero.
This is essentially a programming problem, and it could be
handled by choosing a small € > O and using the special for-
mulas when |m - @ + l/21'd l < €. The value of € chosen

will depend on the particular computer being used. Of course,
we cculd avoid this problem by using Filter 5 of Chapter IV.

As noted there, the performance of this filter is essentially
the same as the Martin-Graham filter and no special evaluation
is necessary except when m - ® = O (this includes ¢ = 0).
Statements for computing the weights ho’ yi, yi, hm’ yi,

and yi when (6.2Lh) holds are included. We chose to compute
these in every run whether needed or not, and they are
designated HO, DHO, DDHO, HM, DHM, and DDHM in the program.

The loop for computing the weights for interpolation uses

exactly the same weight eXpressions as the loop in the first

program. In this case, the loop's upper index is 2N+1
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instead of N because the symmetry of the weights is lost in
interpolation. .The shift of ® units is provided by subtracting
® from m(TX from X iq the program). This is what allows use
of -the same weight expressions. Note that taking & = 0

(TX = 0) gives the weights for filtering withoﬁt interpolation,
and hence this loop can be used for computing both ordinary
filtering weights and weights for filtering and interpolation.
The loop also contains statements to handle the use of the
special weight expressions. If (6.2L) is not satisfied for
any subscript values m, then NA and NB must be read in as
values which will make (N+NA-I+1) and(N+NB-I+1) non-zero for
all values of I. I has maximum value 2N+1, and hence any
integer greater than N+1 will suffice for NA and NB in this
case. When (6.24) holds for certain subscript values, then
NA is to be the negative value for which (6.2L) holds and NB
the positive value for which (6.2l4) holds. This is necessary
to determine the correct sign for the first derivative weight
DHM in each case. In Run 5.30, NA = -12 and NB = 153.

The transfer functions for interpolation are all complex
functions and the recovery of these functions has been
omitted.

Printing of the input has been omitted.

The same loop for computing the desired output has been used
with the argument being shifted by ©o.

The loop for computing the actual output was modified to
allow for the unsymmetric nature of the weights used in

interpolation.
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g

The desired output and actual output is listed for five runms.

The parameter values used for each run are given in Tables 7.1 and

7.2. 1In each run, the input component with frequency f5 is to be

removed by the filters. The & values used are .25 and .5, so that the val ues

interpolated for are one-quarter and one-half the length of the sampling

interval to the right of the center input value. That is, letting the

output of the filter without interpolation be

N

r, = z: heg. ,
J gy B J4n

and the output with interpolation be

g 7 hngj+n’

J

[n]
gt
zi

then ;j is @fs units to the right of rj.

To interpolate for values @fs units to the left

of rj, the weight

relations (6.22) and (6.23) may be used to eliminate recomputation of

the weights. This can be accomplished in the sample program by using

the following loop for computing the actual output.
DO 30 I=1,NN
J=T+K-1
IF(TX) Lo,L1,Lo

LO I1 = NN-I+1

SA1 = SA1 + H(I1)«Z(J)
SB1l = SB1 - DH(I1)«Z(J)
SC1 = SC1 + DDH(I1)xZ(J)

hl SA = SA + H(I)xz(J)
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SB = SB + DH(I)#Z(J)

30 SC

SC + DDH(I)*Z(J)

SB1 = -FS%5B1

SB = -FSxSB

SCl = SClxFS*x2

SC = SCxFS*x2
Provisions for initializing and printing SAl, SB1, and SCl must also
be made. The IF statement is included to eliminate duplicate out-

puts when using the loop for filtering without interpolation (& = 0).
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O WX ~dWwWwhNh K

12

50

51

SAMPLE PROGHAWs FILTERING WITH INTERPOLATION
SMOOTHINGs FIRST AMD SECOND DERIVATIVES

DIMENSION H(61)sDH(61)sDDH(61)92(101)

DIMENSION R{40)sDR(40)sDDR(40)

FORMAT (4F1040)

FORMAT (Al s Ak4)

FORMAT (315)

FORMAT(1H195X9A4sA4s16H DESIRED OUTPUT/)
FORMAT(5X s LHT 97X s 4HR (T) 9 11X 9 5HDR(T) » 10X 3 6HDDR(T))
FORMAT(1H1s5X9A4sA4s15H ACTUAL OUTPUT/)
FORMAT(1XsFT7e393EL547)

P=3414159

READ PROBLEM PARAMETERS

READ(292) RUNsXNUM

READ(2s1) XNesTCsTDsTX
READ(2s1) RAJRBIRCHFS
READ(291) AASARSACHAD
READ{291) BAsBBsBCsBD

NA AND NB ARE SURSCRIPTS OF THOSE WEIGHTS FOR WHICH
SPECIAL EVALUATION IS NECESSARY

READ{293) NAsNB
N=XN

COMPUTATION OF THE UNCONSTRAINED WEIGHTS
THE FACTORS ~FS AND FS%#2 OF THE FIRST AND SECOND
DERIVATIVE WEIGHTS wWILL BE INTRODUCED LATER

RT=TC4+TD

HO=2 ¢%TC+TD

DHO=04

DDHO=8 ¢ ¥ TD## 2% (RTHTC) =4 ¢ #¥P#*2 /3¢ % (RT*¥¥*3+TC##3)
HM=TD/2¢#COS(P%®TC/TD)

THE MINUS SIGN IS NECESSARY IN DHM BECAUSE WE HAVE
REMOVED A FACTOR OF =FS FROM EACH DERIVATIVE WEIGHT

DHM==(P%*TD*{TD+2e*TC)*¥SIN(PX¥TC/TD) +3«#TO##¥2%COS(PHTC/TD) ) /20
DOHM= {7 ¢ #TDX# 32 g #PH¥ 2% (TCHTOH(TCH+TOI+TDH*3/34) 1 #COS{P*TC/TD!?
DDHM=DDHM+3 ¢ #P# TD#*% 2% (TD+2 ¢ #TC) #SIN(P*#TC/TD)

NN=2#N+1

DO 13 I=1sNN

X=2]=N=]1

X=X=TX

IF(X) 51950451

H{I})=HO

DH(1)=DHO

DDH(I)=DDHO

GO TO 13

IF(N+MNA=T+1) 534524953
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52

53
54

13

27

29

H({TI)=HMm

DH{ 1 )==DHM

DDH(1)=D0HM

GO TO 13 .
IF(N+NB=I+1) 55954455 L
H{I)=HM : :
DH{I)=DHM

DOH( I)=DDHM

GO TO 13

H{I)=SIN{HO#X*¥P) /(X*P)

HII)=H (T ) #COS(TD*X*P) /(1 e=G o *TDHH#ZHXHH*2)
DH{II=RT*COS({ 2 ¥RT#X*P ) +TC#COS (2 ¥ TCHX¥*P)
DH(II=DH(I)=H(I 1 # (le=12 ¢ #TOR¥ZHX#%2)
DHIIVY=DH(I) /(X% (lambo*¥TDHX*2#X¥*%2))

DDH{I)==2 e ¥DH(I ) #(1e=128 ¥ TD¥H¥2#XK%#2 ) +24 ¢ #TDH#2%X¥H(])
DOH{I)=DDOH{I) =2 ¢ #¥P#TCH*2%*SIN(2¢#TCHPH#X)
DDH{I)=DDH(I) =2 ¢ #P#RT#%2¥SIN(2 a#KTH#P*X)

DOH( I =DOH(I ) /( X¥ (1 e=Ge#TDH#2¥X¥#2))

CONT INUE

GENERATION OF SAVMPLE INPUT DATA

MA=N+1
M=2%N+40
DO 27 I=lsM
T=I=MA
CA=COS(2 ¢ #P*RA*T)
= SIN(2e#P*REB*T)
CC=COS(2 4 #P*RCxT)
Z({1)=AA*CA+AB*S+AC*¥CC+AD

COMPUTATION OF DESIRED CQUTPUTS

WRITE(397) RUN#»XNUM

WRITE(3,8)

DO 29 I=1940

T=[=1

T=T+TX

CA=COS (2 o #P*RAX*T )}

S=SIN(24%¥P*RB*T)

CC=COS(2+*#P*RC*T)

R{I)=BA*CA+BB*S5+BC*CC+BD

DDRII)==4 ¢ * (PHFS) ##2% (BARRAX®2HCA+HBHRBIX2#S+3CHRC*#2 %)
CA=SIN(2 « #¥P%RAXT)

S= COS(2*¥PHRB*T)

CC=SIN(2e%P*RC*T)

DRI )==2 ¢ #*¥P*FS* (BA*RA¥CA=BB3*¥RI* S+ CxC3#CC)
Y=T/FS

WRITE(3310) YsR{IDeDR(I) 9DORII)

COMPUTATION OF THE ACTJAL CcUTPUT

WRITE(395) RUNXNUM
WRITE(3.8)
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30

31

32

DO 31 K=1940
MB=K=1

SA=0s

S$B=0s

SC=0s

T=MB
T=(T+TX)/FS

DO 30 I=1sNN
J=l4+K~1
SA=SA+H(II*Z(J)
SB=SB+DH(I)*Z(J)
SC=SC+DDH( 1) #Z( J)

THE FACTORS ~FS AND FS*%2 ARE INTRODUCED HERE

SB==F5%SB

SC=SCH*FS*%2
WRITE(3+10) T»sSA9SBsSC
PAUSE

GO TO 12

CALL EXIT

END
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RUN 1420 DESIRED

T R{T)
06025 0,1637818E 01
0e¢l25 (e2073327E 01
Ce225 042216199E 01
0e325 0e1987057E 01
Ded25 041406460E O1
06525 0e5934738E 00
0e625 =042653625E 00
Ce725 =049675943E QO
0e825 =0e1351528E 01
0e925 =Ce1341003E 01
16025 =0e9648516E 00
14125 =043454269E 00
le225 0e¢3400074E 0O
le325 0491294C2E 0O
le425 041245775E 01
le525 041296586E 01
le625 041116132E 01
1,725 0Q48255349E 00
leB25 0Q45722126E 00
164925 044784087E 0OC
26025 Ce5988859E 00
2125 Qe9013744E 0O
20225 041276106E 01
2¢325 0e1571517E 01
2425 0Qe1644850E 01
2525 (Qe1411572E 01
2¢625 0e8777371E 00
2e¢725 001446102E 0O
20825 =046164962E 00
2.925 -001211989E Ol
34025 =0e1482024E C1
36125 =041347767E 01
36225 =0e8354293E 00
3e325 =046962841E=-01
36425 (047619902E 0O
3525 061462207E 01
36625 0Qe1879593E 01
3e¢725 0e1949135E 01
3825 (0e1706126E 01
3¢925 041269598E 01

CUTPUT

DR(T)
0e5351961E
043097759E

-0e3775347E
-044170801E
-047237290E
~048702560E
~048126870E
-045640479E
~041907884E
042068331E
Ce5244037E
0+6839658E
046562417E
0e4677525E
041908088E
-Ce8033547E
-0e2596151E
-042961104E
-041894210E

0el128211E°

0e2241276E
0e3619314E
Ce3613879E
0e2047774E
~Ce7276661E
~0e3928616E
=Ce6574944E
047793 754E
-0 ¢7095955E
~0e4539264E
~0e7258547E
063366154E
0e6666752E
CeB8327211E
047966818E
0e5778070E
0e2458884E
~Cel0U6309E
~0e3648266E
~Ce4803969E

158

0l
01
00
01
01
01
Cl
01
01
01
01
01l
01
01
01
GO
01l
Cl
ol
00
0l
ol
01
01
00
01
01
01
01
0l
00
01
o1l
21
01l
01
01
01
01
01

DDR(T)
=0e14364482E
=0s2988599E
=0+3806872E
~0e3600096E
~042382530E
~Qe4723590E

0e1601407E
0e3257205E
0e4035715E
0e3737358E
Ce2480251E
0e65609569E
-0e1169485E
«(042475618E
=0+2900906E
~0e23738353E
~0e1124212E
0e394B057E
Del654082E
0e2218744E
0e1887761E
075901 24E
-)s8006871E
=0e2271295E
=0e3144828E
=0e3088420E
=0e2053925E
«0e2993331E
0s1685274E
0e3324809¢E
0e4134038E
De3866184E
0e2589256E
0e6663772E
~0e1353896E
~(e2903459E
=0e3565577E
~U0e3198193E
~0e1971893E
-0e¢311283CE

02
02
02
02
o2
01
02
g2
02
o)
02
01
02
02
02
02
02
01
02
02
02
01
01
02
02
02
92
0l
02
02
02
02
02
0l
02
02
02
02
02
01



RUN 1420
T R(T)
0e025 0Qel645196E 01
0el25 0+2085801E 01
0e225 0e2232048E 01
0e325 042002062E 01
Qe425 0el4le376E 01
0e525 (0e5965244E 00
0e625 =042684384E 00
0e725 =0s9752920E 00
O0eB825 =0el362462E 01
06925 =041353011E 01
1e025 =0e9743336E 00
l¢125 =043488280E 00
14225 063436755E 00
14325 069214365E 0O
led425 061255661E 01
le525 041305589E 01
l1e625 0e1123397E 01
le725 048303442E 00
1e825 0e5736964E 00
l.925 0Qe4769812E 00
20025 065972460E Q0
2125 069030666E 00
2¢225 0el282765E 01
24325 041581786E 01
24425 041655958E 01
2e525 0el421372E O1
24625 0e8848663E 00
2e725 0Q0el473961E 00
24825 =066199315E 00
20925 =041221819E 01
3,025 =0e1495326E 01
36125 =041359797E O1
36225 =0e8425124E 00
36325 =047065820E=-01"
34425 067665408E 00
34525 0Qel471727E 01
34625 061893066E 01
34725 041963911E 01
36825 0e1718232E 01
34925 061276141E 01

ACTUAL OUTPUT

DRIT)
065365969E
0«3100372E

=0¢3900173E
~0e4198776E
=0e7276670E
-048745769E
~0+8165518E
=0e5667804E
=0+1919801E
0«2073037E
0e5263395E
046868403E
046593228E
0+4703687E
0e1925944E
=047938837E
=0¢2592850E
=-042960987E

-041894297E -

Cell49186E
0e2246207E
0e3624881E
0e3615464E
042040599E
=0e7459885E
=~0¢3957067E
=046609727E
-0«7829313E
=0+7125638E
=0e4556328E
=0e7254911E
0e3384594E
0e6699155E
0e8366367E
0«8005024E
0+5808911E
0e2477922E
=041000987E
=0e¢3655303E
-0+4818810E
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ol
01l
01
01l
01l
0l
01
01

DORI(T)
=0¢1444303E
=043002462E
~0e3825466E
=0e¢3623316E
~0e¢24049295E
~064843942E

0e1606258E
0e3277412E

0e4064327E .

0e3768262E
0e2510072E
0«6856093E
=0s1156772E
=0e2480119E
=062920605E
~0e2399836E
=0ell47678E
0e3771034E
0el641314E
0e2210921E
0¢1886403E
De7628645E
=0e7978300E
=042276006E
=0e3157423E
=0e3102409E
=062062175E
=0e2992994E
0e1692924E
0e3340488E
Oe4l159112E
0«¢3898044E
0e2618887E
Oe683238B7E
=0e1354440E
-0e2918478E
=-0e3589650E
~0e63227905E
=062004334E
=~043403159E



RUN 230 DESIRED

T R(T)
0e025 042514950E 01
0el25 (0e3923879E 01
06225 0e2373444E 01
0e325 =~0s9553063E~01
Qo425 =043845928E 00
De525 0s1539565E 01
De625 042617318E 01
O0e725 0e9686020E 00
0e825 =04l470662E O1
0e925 =041590414E Q1
la025 046210957E 00
la125 042076119E 01
le225 (0e8576506E 00
16325 ~041140519E 01
ly425 ~048515008E CO
16525 041696458E 01
1,625 043382679E 01
le725 042267513E 01
14825 042346264E 00
le925 043543106E 00
24025 042614910E 01
24125 043923881E 01
26225 (042378488t 01
24325 =049550111E=01
2¢425 =0e3846126E 00
24525 041539530E 01
24625 042617323E 01
2¢725 0e9686465E 0O
20825 =0e1470634E 01
20925 =0e1590438E 01
24025 046210549E 00
34125 042076117E 01
34225 0e8576876E QC
34325 =0e1140498E 01
34425 =068515309E 00
34525 041696412E 01
34625 063382674E C1
36725 042267549E 01
34825 062346486E 00
34925 043542845E 00

QUTPUT

DR(T)
0e2365615E
=041202200E
=0e62594291E
=0e1745135E
041171776E
0e2077077E
~062902285E
~0e2629146E
=0el641430E
0e¢1403904E
0e2414919E
0e¢1202526E
~0e2186224E
=041209428E
0es1782711E
0e2703466E
042902889¢E
=042151360E
=041313154E
0e¢1550563E
0e2365633E
-0¢1201650E
=C0e2594273E
~041745178E
0e1171733E
062077093E
=Ce2901757E
~042629131E
=0el641474E
0¢1403859E
0e2414934E
Cel203044E
-0421862C9E
=0el209472E
0el782668E
042703483E
0e¢29VU3430E
=0¢2151342E
=0e1313196E
0e1550521E

160

02
01l
02
02
02
c2
01
02
o2
02
02
01
0z
02
0z
02
ol
02
02
02
02
ol
02
02
02
02
01
02
02
02
02
01
02
o)
02
02
01
02
o2
02

DDR(T)
~041074349E
~0e3249451E
~0e1051014E

0e2503517E
0e2532060E
“0e9681983E
-0e3120498E
-0e9118839E
0e2639228E
'0e2651079E
~0+8775341E
-0e3067084E
=0e9009484E
0e2606635E
062578161E
-04¢9836530F
=0e3196036E
-0e1040111E
0e2470904E
0e2459161E
-0e1074285E
=0e3249451E
~0s1051078E
0e2503477E
0e2532099E
-0e9681349E
=0e3120499E
=0e9119481E
0e2639188E
0e2651118E
“0)e8774TU2E
=0e3U6TUBLE
-0e9U10120E
0e26065956E
0e2578201E
-0e9835886E
~0e3196036E
~0e104Cl74E
0e2470865E
0e2459201E

03
03
03
03
03
02
03
02
93

03

02
03
02
03
03
02
03
03
03
03
03
03
03
03
03
02
03
02
03
03
02
03
02
03
03
c2
03
03
03
03




RUN 2«30

T RET) )
De025 0e2614879E 01
0el25 043925231E 01
0e225 042378706E .01
Q0e325 =049571261E=01
Oe425 =0e3845009E 0O
Ue525 041540655E 01
Qe625 062620083E 01
0e725 069703921E 00
0e825 =041469351E 01
06925 =041589010E 01
l0025 0e6231883E 00
14125 062079479E 01
le225 048595701E 00
le325 =04+41139556E Q1
le425 =0¢8508899E 00
le525 061697390E 01
le625 043384626E 01
le725 Ce2267904E 01
le825 0e2340952E 00
le925 0e3536089E 0O
26025 062614839E 21
2el25 0e3925233E 01
24225 0e2378750£ 01
2325 =0:9568308E~01
26425 =043845207E 0O
2¢525 041540620E C1
24625 042620088E 01
24725 049704366E 00
20825 =0e1469323E 01
20925 =~041589034E 01
34025 046231474E 00
36125 042079477E 01
36225 0e8596071E 00
3e325 =041139536E 01
34425 =068509201E 0O
36525 0el697344E 01
36625 043384621E O1
36725 0e2267940E 01
36825 042341173E 0O
34925 043535827E 00

ACTUAL QUTPUT

DR(T)
Qe2366695E
-04123767CE
~0s2596372E
~0e1744320E
0el172585E
Ce2077860E
=0.2913330E
=0¢2631990E
~041641507E
0el403777E
Oe2414815E
0ell83964E
-042189610E
~041209786E
0el782594E
0e2703660CE
042889903E
~0e2153983E
~0e1312619E
Oel551381lE
Qe2366713E
~041207120E
=042596355E
=041744362E
0e¢l1172542E
0e2077876E
=042912802E
~062631974E
~0el641552E
0e1403732E
0¢2414830E
Cell84483E
=042189595E
~041209831E
0e1782550E
0e2703676E
0e¢2890443E
=0e2153966E
=0el312661E
0es1551339E

161

02
cl
02
ce
02
02
01
02
02
02
02
0l
c2
02
02
02
01l
02

.02

02
02
Ql
02
02
0z
02
01
02
02
0z

0l
02
02
02
02
01
0}
02
02

DDR(T)
=0e«l075791E
=Ce3255331E
=0¢1051581E

Ue2505466E
0e2533687E
=0e9725229E
=0e3129780E
=0e¢9160369E

0e2637756E,

0e¢2649786E
-0e¢88399256E
=J3¢3077504L
=0e9051335E
0e2606240E
0e2578949E
=0e9872289¢t
=0e3203056E
=-Uel040709E
0e2473931E
0e2462870L
=-0s1075727E
~0e3255331E
=0s41051645L
0e2505426E
0e2533726E
=0e9724594E
-043129780E
~0s9161012E
Qe2637716E
0e2649825L
=048839286¢L
~043077504E
=09051971E
062606201E
0e2578989E
=0e9871645E
=03203055E
=0e1040773E
0e2473892E
0e2462909E



RUN 3420 DESIRED

T R(T)
Ge050C 0Del766679E 01
Jel50 0e2141117€E Q1
Ce250 062194795E C1
06350 061871746E C1
Ce450 (061218520E 01
0eb550 0e3749803E 0O
06650 =064630277E 00
Oe750 =~0+1098110E 01
De650 =041386567E 01
Q06950 =0e¢l277845E €1
lo050 =028264314E 00
lel50 =041728700E CO
le250 04499G5934E CO
14350 041021921E 01
led450 0e1284444E Q1
le550 061269343E O1
le650 041048102E 01
1¢750 C47531204E CC
14850 05302667E 0C
le950 OQs488L8BUBE VO
26050 046606031E 0O
24150 049938517E U0
2¢250 041363534E 01
2¢350 0e1615299E 01
26450 041616731E 01
2550 0s1303869E 01
24650 0Qa47073371E 00
26750 =0e5065416E-01
24850 =07881384E 0O
24950 =0e41314759E 01
34050 =0ela487195E C1
34150 ~06125176CE C1
36250 =0e6611172E OOC
364350 061400939E CO
36450 0e9564504E 00
3¢550 Q41597300E 01
34650 04192%5902E C1
3475C Q019142198 Ol
34850 061609163E 01
3¢950 041148966E 21

QUTPUT

DRIT)
0e4938876E
042313379E

~041336816E
—045044983E
~0s777993CE
-048754983E
—047666565E
~0e4788715E
—0e8941116E
0e2974423E
045811985E
0e6944924E
046220C4TE
0e4032777E
0s1187430E
~041365276E
-042830577E
-042817090E
-0¢1452336E
046690398E
0e2687022E
0¢3763516E
0e3363824E
0el&t42648E
-0e1525188E
-0e4680505E
-G e 7040914E
-0e7806685E
~Ce6616079E
~043670047E
0e3137219E
0e4304714E
0e7259899€E
048428938E
0e7571182E
045018523E
0el565717E
~0e1777057E
~0e4092371E
-Ue4829101E

162

cl
01
0l
cl
ol

[a]
w

01
o1
0o
01l
01
01
01
0l
0l
Ol
0l
01
Gl

00

01
01
0l
01
01
01l
C1
01
91
0l

N
v

cl
1
01
cl
01
01
0l
01
01

DDR(T)
-0.1866949E
-043278050E
~0,3656261E
-043382819E
-0e1951801E

0e5394089E
042075845E
0e3547091E
0e4U62941E
Ce3501531E
0e2058021E
0e1818384E
-0.1563247E
-042672656E
-042854307E
-042114330E
-0e7490256E
UsT7538406E
0e1873035E
Ue2221362E
041670003E
0e3906191E
-0.1198093E
~0e2562756E
~043225165E
-042916398E
~0416666T4E
0e1976008E
0e2149321E
043619575€
0e4170975E
043631849E
0e2149681E
041471941E
~0e1805476E
-043163064E
~Ce3568B07E
~0e2959C6TE
~041577006E
0+1083350E

02
g2
02
02
02
00
ve
02
02

02

02
01
02
02
02
02
01
01
02
c2
Q2
01
02
02
02
02
02
o1
02
cZ
ce
e
g2
0l
02
02
02
o2
c2
01l



RUN

T
Qe050
Del50
0e250
04350
Oe450
0e550
Ce650
0750
0e850
06950
14050
14150
14250
le¢350
le450
le550
le650
1.750
1.850
1,950
24050
2¢150
2¢250
24350
2e450
24550
20650
2¢750
24850
2¢950
34050
34150
34250
36350
3e450
34550
364650
34750
36850
3¢950

3420

R(T)
De1774376E C1
0e¢2153616E 01
0e2210266E 01
001885964E 01
0e¢1227372E 01
0e3769149E 00

~0e4670542E 00
~0e1106445E 01
=041397744E Q1
=0e¢1289674E 01
=048353605E 00
~0e1754956E 00

045044458E 00.

0+10321031E 01
0+41294705E 01
041278515E 01
0¢1055399E 01
0e7578907E Q0
0e531709%9E 030
Oe4867821E 00
0e6590886E 0OC
Ce9956966E VO
0el1370227E 01
0e1625346E 01
O0el627319E Q1
0e1312906E V1
0e7135680E 0T
=0¢4877054E-01
=0e7923162E 00
=0e1324989E 0Ol
=041500422E 01
=0e1263242E 01
=0s6673232E 00
0e¢1400626E QO
0e9619329E 0OC
0el607544E 01
0+1943788E 01
0e1929044E C1
0e¢1620995E ©1
0e¢1155057E Q1

ACTUAL OQUTPUT

DR(T)
044950708E
0e2313020E

~041354320E
-045079988E
—047825891E
-046801300E
~047703970E
-0¢4811996E
~0+9009312E
Ce2984905E
0e5837741E
0e6979118E
0¢62527C5E
0e4056003E
041199263
-0.1362002E
-042832199E
~042821063E
—041456047E

0e6689462E

0e2692149E
0e3770613E
Ue3365614E
Oel&32769E
=0e¢1548013E
=0e4712880E
=0e7077912E
~0.7843221E
=0e6645688E
=0e¢3684793E
Ce3196643E
0e4330678E
0e7298B474E
Qe8470385E
Qe 7607867E
0e5045543E
Q0el579341E
=0e1779031E
=0¢4107951E
=0e4851237E
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01
01
01
01
01
01
01
01
Co
01
01
o1
01
01
01
01
01
01
ol
0C
ol
01
01
01
0l
01
J1
0l
01
01
0
0l
0l
01
01
ol
0l
01
0l
0l

DDR(T)
-0el873413E
~0e3287326E
~0e3875856E
~0e3413317E
=0e1981448E

06¢3959359E
0e20UBCH06E
0e3563456E
Oe4UB83441E
0e3525874E
0e2086821E
0e2073010E
-0e1554569E
-0e2686711E
=0,2882790E
~0e2143419E
—0eT7724943E
De7334094E
DelB54bb44E
0e¢2210497E
0el672224E
Ce4V05T763E
~041193893E
=0¢2572307E
-0e3243235E
~(0e2932142E
~0e1675848E
0e1918299E
0e2146376E
0e3626463E
Vett1S3747E
0e3664565E
0e2176670E
Qel567866E
-0.1812337¢
~0e3179290E
-0a3592174E
-0e2992190E
-0el617132E
UeT7379718E

02
02
02
02
02
00
Q2
02
02
02
02
01
02
02
02

01l
01
02
02
02
01
02
02
02
oz
02
OF |
02
ve
Q2
02
02
01
02
02
02
02
92
00



RUN 4+30 DESIRED

T R(T)
04050 043163258E 01
0el50 043793120E 01
0e250 0w1707112E 01
04350 =044481194E 00
Oe&450 =0a1914259E-01
0e550 Ce2019128E 01
0e650 042448128E 01
06750 0+2929105E 00
0e850 =0s1793112E 01
06950 =0e1163274E 01
14050 041187863E 01
14150 062011112E O1
1¢250 042929174E CO
164350 =041356097E 01
14450 =03320337E 00
14550 042331974E 01
14650 043356110E C1
16750 0Qe1707140C 01
14850 =041109660E=01
14950 0e8120834E 00
24050 043163224E 01
2¢150 043793136E 01
24250 041707158E U1
2¢350 =0e4481015E 00
24450 =041917173E=01
24550 042019098E 01
24650 0.2448146E O1
2750 062929568E 00
24850 =0+1793097E 01
24950 =041163308E 01
3,050 0+1187828E 01
34150 042011123E 01
3¢250 042929561E 00
34350 ~041356089E 01
34450 =043320733E 00
34550 042331934E 01
34650 043356118E 01
34750 0¢1707179E 01
34850 =061108587E=01
34950 0«8120483E G0

QUTPUT

DR(IT)
0e¢1984135E
~049192650E
=042735415E
=~0+1056570E
0el722981E
0e1722997E
~041056545E
=0¢2735416E
~0e9192911E
Oel9B84118E
042082440E
~046339902E
=0e2291128E
~044967608E
Ce2343547E
0e2343595E
=~04966835E
~0+2251127E
~0e46340641E
0e¢2082396E
0el984168E
~0e9192128E
~0¢2735414E
=041056520E
0el722950E
041723028E
-0¢1056495E
=042735417E
~0e9193434E
0+41984085E
062082470F
~C0e6339408E
=0e2291129E
~0e4968124E
0e2343516E
Ue2343627E
=0s4966319E
=042291125E
=-046341135E
0+42082366E
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02
01
02
02
G2
02
02
02
01l
02
02
01
0Z2
01
02
02
01
02
0l
02
02
01
C2z
02
G2
02
02
02
01
02
02
01
02
01
02
02
01
02
0l
02

DDR(T)
~041953862E
~043091631E
=~046979695E

042958880E
041840956E
~041840929E
~042958891E
0e6976321E
043091621E
0el1953889E
~041758874E
-042915764E
046974684E
0e3048484E
0e1871862E
~041871780E
~0e3048515E
—~046984689E
062915733E
041758955E
-041953808E
-~043091652E
—0.6986441E
042958859E
041841009E
~0+1840875E
-042958912E
046969575E
043091600E
041953944E
-041758819E
-042915785E
0e6968016E
0e3048464E
0e1871917E
~0.1871725E
~0e3048535E
~046991364E
Ge2915713E
0e1759009E

03~
03
01
03
03
03
03
01
03
03
03
03
0l
03
3
03
03
01
G3
03
03
03
01
03
03
03
03
o1
03
03
03
03
01
03
03
03

01
03
03




RUN 4430
T R(T)
De050 0e3163427E 01
0el50 0e3794153E C1
Ce250 041706817E 01
0e350 =0e4479947E 00
Ce450 =0e1877488E=01
0e550 062020320E 01
0e650 0e2450356E 01
0750 042938679E 00
0e850 =0¢1791801E 01
Ce950 ~041161902E 01
1,050 0e1189780E 01
14150 0e2013714E 01
14250 0.2938597E 00
14350 =041355187E 01
le450 =043314098E 00
14550 042332868E O1
14650 0e3357515E 01
164750 041706830E C1
1.850 =0¢1137338E=01
14950 048117026E 0O
2,050 03163394E 01
24150 03794168E 01
26250 041706863E 01
24350 =0e4479768E 00
2¢450 =0¢1880399E=01
24550 0e2020291E 01
24650 0e2450374E 01
2,750 042939142E 00
Ze850 =041791785E 01
20950 =0s1161935E 01
3,050 0e61189745E 01
34150 0¢2013724E Ol
34250 02938985E 00
34350 =041355179E 01
34450 =Ce3314494E 00
34550 02332828E 01
3.650 03357524E 01
34750 C+1706868E 01
3¢850 =0e1136279E~C1
30950 0e8Ll16673E 00

ACTUAL OUTPUT

DR(T)
0e1984857E
=~0e9212233E
~042737617E
=0+1055026E
0el724259E
0el722880E
~0e1059710E
=042739075E
=0e9193114E
0el983878E
0+2080999E
=-0+6381557E
~Ce2295365E
=0 e4968807TE
0e2343695E
0e2342993E
=0e4996419E
=0e2293906E
=046326196E
0e2084062E
0e1984890E
=0e9211710L
=042737616E
=C0«1055076E
0e1724228E
Cel722911E
=-0«1059660E
=0e2739076E
-049193637L
Cel983845E
0e2081l029E
—0e¢6381064E
=0e2295367E
=044969322E
Ce2343664E
0ed343024E
~0e4995904E
~0e¢2293905E
~0e6326689E
Ce2084033E
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02
01
02

02

02
02
o2
02
01
02
02
01
02
Cl
02
02
01
02

01

02
02
21
02
Q2
02
G2
02
02
01

"
“

02
0l
c2
Cl
02
02

02
0l
(0)2

DDR(T)
~0e¢1956055E
~0e3096701E
=0e6916901E

0e2961674E
0e1842178E
=0e1845075E
~042966246E
0e6799791E
.0e3092147E
0e¢1953192E
=0el764403E
=0e2923832E
04¢680101CE
0e¢3049777E
0el872595E
~0e1875356E
=~0e¢3054297E
~0e6919042E
0e2919293E
Oel761607E
=041956001E
~0e3096722E
~046923659E
Ce2961652E
0e1842232E
~0el845021E
=0e2966267TE
0e6793033E
De3092126E
Cel953247¢L
~0el1764349E
=0e2923852E
0eH6754329%¢L
Ue3U49757E
CelB72650E
=0.1875301¢E
=043054318E
=046%925717E
Ve2919273E
Oe«l761l662E

03
0l
03
93
C3
Q3
01

03

03
3
03
01
03
03
03
03
01
03
03
03
3
01l
03

03
03
0l
03
03
03
03
0l
03
G3
03
03
ol
03
03



RUN 5430 DESIRED

T R(T)
06050 0e1766679E 01
Qel50 042141117E C1
Qe250 0e2194795E 01
0e350 Q41871746E 01
Qe450 (041218520E 01
0e550 0e3749803E 00
Ueb50 =0 e4630277E UO
0e750 =0el09811CE 01
0e850 =Del386567E 01
00950 ~001277845E Ol
14050 =0e8264314E QO
lel50 =~Ce1728700E QO
1e250 (0e4999934E OO
le350 041C21921E C1
le&450 Qel284444E Q1
1le550 061269343E 01
le650 Calu481l02E 01
le750 0e7531204E JO
le850 065302667E 00
le950 Qe4881806E 00
26050 0e6606031E 00
2¢150 0e9938517E U0
20250 041363534E 01
2350 0e1615299E 01
2e450 (Cel616731E 01
24550 0e1303869E 01
24650 Qe70UT3371E 0O
2e 750 =0 e5065416E-01
2e8350 =0e47881384E V0O
26950 =0e1314759E C1
30050 =0el487195E Q1
3150 =0e1251760E J1
3250 =06611172E 00
3¢350 0e14008939E VO
26450 09564504E CO
3550 061597300E 01
364650 01929902 01
34750 061914219E 01
34850 061609163E U1
3950 Qellag966E 01

QUTPUT

DR(T)
0e49388B76E
0e2313379E

-0el1336816E
=0e5044983E
=0e7779930E
=0 eB8754983E
=04 7666565E
~044788715E
=0e8941116E
062974423E
0e¢5811985E
0e6944F924E
0e6220047E
Qe4032777E
O0e¢llB8743CE
~0e1365278E
=Ce2830577E
~0,2817090E
-0 el452336E
Je6690398E
0e2687022E
Oe3763516E
Je3363824E
Qel&s2648E
=Cesl5251C8E
=0 +4680505E
=~0+7040G14E
_007806685E
-0e6616LT9E
=0e367C04TE
Ce3137219E
Oe43C4T14E
Ce7259899E
Ue428938RE
0e7571182E
Qe5018523L
Qel565717E
=Uel777C57E
-0 e4092371E
~Ce&48291C1E
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01
01
01
01
01
01
01
01l
00
01l
Cl
Cl
o1
01
01
01
Cl
0l
01
00
01l
01
01
o1l
01
01
01
01
01
01
a0
01
01
01
0l
01
31
Ul
cl
01

DDR(T)
~0e1866949E
~03278050E
~0e3856261EL
~0e3382819E
~041951801E

0e5394089E
042075845E
0e3547091E
0e4062941E
0e3501531¢E
0e2058021E
0el818384E
~0e1563247E
«0e2672656E
=~0e2854307E
=0e2114330¢E
=0e7490256E
Ve7538406E
01873035E
0e2221362E
JelO6TUD03E
063906191k
~0ell9b0O93E
=)e2562756E
=-0e3225165E
-0e2916398L
=0el656674E
0e1976008E
0e2149321E
0e3619575E
0e4l170975E
0e3031849E
Oe2l4968lE
0eld71941E
=0el8C547T6E
~0e3163064E
=0ae3568807E
~0e2959067L
=Cal577006E
JelC83350¢C

02
02
02
02
02
00
02
02
02
02
02
01
02
02
92

a1
01
02
ge
22
01
02
a2
02
02
92
0l
0z
02
02
02
02
ol
02
02
02
U2
32
01



| -2

RUN

T
0e050
Jel50
0e250
0e350
0e450
0550
D650
0750
Qeb50
0e950
le0O5C
1e¢150
1250
16350
lLed50
14550
le650
1e750
leE50
ls95C
24050
2e 150
26259
2e350
2e450
24550
24650
2¢750
2850
2¢350
34050
3¢150
34250
34350
34450
34550
34650
34750
3¢850
36950

54390

R(T)
Del762292E 01
0e2129609E U1
042196410E C1
04¢1874763E 01
0el221371E 01
De3778123E CO

=0e4592694E 00
~0e1093578E C1l
~0e1382604E 01
-Cel275110E C1
=0e8237377E CO
~0e1685263E CO
Ce5059884E CO
Cel027705E 01
0¢1288331E 01
041271353E 01
0¢1049060E C1
Cs7528389E 0O
Ce5275501E 0T
0s4827871E 00
0¢65443283E 00
0e9895827E Q0
Oel362264E 01
Cel6l6205E 01
0e¢1618903E 01
0el307665E 01
0e«7134020E 00
~0¢4319079E-01
~0e7815321E 00
=01310492E 01
~0¢1l484557E 01
=041249042E 01
-0e6578129E 00
0e1429601E 0O
0e9581022E 00
0e1598452E 01
0e1931647E C1
Jel3l6124E 01
0e1l609352E 01
Qell4e293E O1

ACTUAL OUTPUT

DR(T)
0e4933204E
0+2320372E

~041324026E
-045029287E
-0.7757496E
-043724501E
~0e7636938E
~0¢4773226E
-0¢8975653€E
042959 144E
0e5793915E
0e6925314E
0e6195520E
0e4005633E
0el167402E
~0e1271376E
~0428275C0E
-0e2815910E
-0 s1457683E
0.6627890E
042686408E
Ce3767041E
043365698E
0el443381E
~0e1517107E
~0¢4659297E
~Ce7012595E
~0¢7784130E
-046606293E
~043670035E
043082342E
0e4291059E
047232847E
048391574E
047536420E
0e4997765E
0s1558773E
-041778140E
~0¢4091518E
-044822620E
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01

01

Gl
01
01
01
01

01

00
o1
cl
01
01
ol
01
c1l
cl
01
Cl
20
01
Cl
01
01
01
01
0l
01
01
J1
00
01
01
0l
21
01
01
01
01
ol

DDR(T)
=~0e¢1840920E
=0e3255046E
~0e3844223E
~-0e3381265E
=0e1957212E

Ce4lll782E
0e2052792E
0e¢3516295E
0e4034260E
Oe34E42B6E
0e2052532E
0elB81C723E
=0e15645C4E
=0e2673257E
~0e2851989E
=0e2112144E
=0e7529090E
Oe74355E7TE
Uele64270E
De2222530E
0e1681328E
CelUH2523E
=0ell8B5485E
=0e2551871E
~0e3215389E
~0e2912905E
=0esl677362E
0el713680E
Ue2115982E
0e3589899LC
Oe&149155E
0e3615935¢
Ce2139175E
Osl461235E
«0el794703E
=-0e3146130E
~0e3556241E
=0e2956319EL
=0e1580219E
0e1058495E

Q2
02
02
02

00
02
o2
G2
e
02
01
c2
02
02
02
21
0l
02
02
02
01
02
02
02
02
02
01
02
o2
U2
92
02
01l
02

02
02

01l



7.4 SAMPLE PROGRAM AND RESULTS FOR INDEFINITE INTEGRATION WITH

SMOOTHING
The following program for indefinite integration with smoothing

was run with the input given by (7.7) and parameter values as follow:

a

1 1.5, a, = 2.0, a

5 = 1.5, 8 =0, f; =0.7, £, = 0.9, £, = 2.0,

f 10, £, = 1.0, and Af = 0.6 (Af both the inner and outer roll-off

s

1

length). In terms of the frequency ratio, the input frequencies are

.07, .09, and 0.2. Also T, = 0.1, 74 = .06, and Tp = .16.

d

N was taken to be 25, and hence 2N+1 = 51 weights were used. The
number of terms used in computing the sine integral was 25--which is
too many for small values of the argument. For large values of the
argument, the first terms of the series may become large enough to
cause loss of significance, and computation of the sine integral in
this case should be approached with caution.

A transfer function recovery is provided in this case. This may

be compared with the designed transfer function of this filter in

Section 6.0.
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Vv pPLNRE

INDEFINITE INTEGRATION WITH SMOOTHING

DIMENSION TERMA(50) s TERMBI(50)sH{(30)s2(101)

FORMAT (4F1040)

FORMAT (15XsF7439E2047)

FORMAT(1H1937HINDEFINITE INTEGRATION WITH SMOCTHING/)
FORMAT (20X9»23HF TRANSFER FUNCTION/)

FORMAT(////71X932HDESIRED QUTPUT AND ACTUAL OUTPUT/)

FORMAT (17Xs1HT 98X914HDESIRED QUTPUT»6Xs13HACTUAL OUTPUT/)

P=3414159

READ PROBLEM PARAMETERS

READ(291) XMesXNsTCH»TD
READ(291) RAsRBIRCsFS
READ(2s1) AA»AB»AC
READ(291) BA»BBsBC
M=XM

N=XN

RT=TC+TD

COMPUTATION OF SINE INTEGRAL

TERMA(1l)=14

TERMB(1l)=1e

DO 9 I=1sN

X=1

XA=2 ¢ ¥ X¥P%TC

XB=2 o ¥X#P%TD

DO 7 K=1yM

Y=K

J=K+1

Y2 (20%Y=1o) /{26%Y*(26%Y+14 )%*2)
TERMA(J) ==XA* %2 *TERMA (K) #Y
TERMB(J) ==XB**2%*TERMB (K ) *Y
SA=0 e

SB=0s

DO 8 J=1M

SA=SA+TERMA(J)
SB=SB+TERMB(J)

COMPUTATION OF THE FILTER WEIGHTS

A=2¢4 ¥PXTD* ( XB%¥SB~=XA%*SA)

A=A+COS( 24 ¥P*¥X¥TD) /X=SIN(24%PHX*HTD) /(26 #PHTDHX%%2)
A=A+ (SIN(2e¥PXX%¥RT)=SIN(2¢%P*X*¥TC) ) /(24 %PHTCHX%%2)
H{I})=A=TD*COS (2 4 #P%X*TC) /(TC*X)

TRANSFER FUNCTION RECOVERY
WRITE(393)
WRITE(394)

DO 11 K=1s51
HX=0+
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10

11

12

13

14
15
16

Y=K=1

Y=a0 1Y

DO 10 I=1N

X=1
HXSHX4+2 e ¥H (I ) *SIN(2 ¢ #PxX*Y)
HX=HX/ (2 ¢ ¥P%*2%TD#FS)
Y=Y*FS

WRITE(392) YasHX

GENERATION OF SAMPLE INPUT DATA

MA=N+1

MB=2%¥N+40

DO 12 I=1yMB

T=1I=-MA
CA=COS (2 o *¥P*¥RAX*T)

S= SIN(2¢%P#RB*T)
CC=COS(2 « *¥P*RC*T)
Z(1)=AA*CA+AB*S+AC*CC

COMPUTATION OF DESIRED AND ACTUAL OUTPUTS

WRITE(3s5)
WRITE(3496)

DO 14 K=1»40
MA=K-1

MB=N+1

SA=Qs

T=MA
CA=SIN(2 ¢ #P*RA*T)
S= COS{2+*P%RB*T)
CC=SIN(2¢#P*RCH*T)

W=(la/(24%P%FS) )% { (SA*¥CA/RA)=(BB*S/RB)+(BC*CC/RC))

T=T/FS

DO 13 I=1sN

KA=zMB=]

KB=1+MA

KC=MA+B+1
SA=SA=H({KA)*¥Z(KB)+H(I)*Z (KC}
SA=SA/ (2 ¢%P%%2%XTD*FS)
WRITE(3916) TyewsSA

PAUSE

FORMAT (13XsFT7e392E2047)
CALL EXIT

END
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INDEFINITE INTEGRATION WITH SMOOTHING

F TRANSFER FUNCTION
0000 0e0C000QQ00E 00
0e¢100 ~064835658E=~01
04200 -0 ¢8780948E=01]
06300 -0el1277766E Q0
0400 -0+1789851E 0O
0e500 =042279376E 00
0600 =0e¢2476159E 00
Q04700 =062315462E 0O
04800 =042007518E 00
0500 =0e¢1757450E QO
14000 -041565062E 0O
1100 =-0e1339059E 00
14200 =0e¢1067456E 00
1.300 =067933023E=01
le¢400 =0e5228427E=01
14500 =0e2565890E=01
16600 =0e5420293E=02
14700 062290246E=02
1800 0e6325266E=03
14900 =041412288E=02
24000 =042060364E=03
20100 0e9969801E=03
24200 0e85624T79E=04
24300 -0e¢7656668E=03
2¢400 =Q0e¢3707978E=Q4
24500 0e6189613E~03
24600 0el383451E=0Q4
24700 =0e5182999E=03
2¢800 =0el719720E=05
2¢900 Qe&4456929E=03
34000 =0e¢4721969E=05
34100 ~0e3915387E=03
34200 0e7956620E=05
34300 0e3501991E~-03
34400 -0e9256311E~05
34500 -043181395E-03
34600 0e9363038E=05
34700 0e2930673E=03
34800 ~0e8737031E=05
3,900 =0e2734517E=03
44000 Qe7676857E=05
44100 042582632E=03
44200 =066377806E=05
44300 =0e2468168E=03
44400 0e4938406E=05
44500 Q0el2386498E=03
44600 -Qe3382480E=05
44700 ~002334196E=03
44800 0el717Q76E=05
44900 0e¢2308705E=03
5000 0el579199E=07
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DESIRED OUTPUT AND ACTUAL QUTPUT

T

0¢0QQ
0100
0200
04300
04400
0e500
0+ 600
02700
0e¢800
06900
1000
16100
14200
14300
14400
14500
1,600
1+700
1,800
1,900

24000

20100
24200
24300
24400
2¢500
24600
2¢700
24800
24900
34000
3,100
34200
34300
34400
34500
3600
34700
34800
34900

DESIRED QUTPUT

~043536779E QO
~06¢1524097E 0O
041121917E 00
0e3746589E 00
045604481E 00
0«6122803E 00
045068678E 00
02635254E 00
=045927271E=01
-043788076E 00
=046104846E 00
=0+6913374E 00
=0¢5978873E 00
=043531308E 00
=0+2054067E=01
0e3132720E 00
0e5623014E 00
0«6645101E 0O
0¢5981959E 00
0+3868218E 00
0s9117493E=~01
=042086029E 00
=044357007E 00
-0e5374080E 00
=0e4981004E 00
=-0e3410508E Q0
=0+1190831E 00
041026215E 00
062660714E 0O
Qe3364188E 0O
043097564E 00
0e2109084E 00
0+8255693E=01
-043031365E-01
=0e9537795E=01
~0e1024980E 00
=0e6495364E~01
~041235776E=01
0e2197467E~-01
0elt62374E~01
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ACTUAL OUTPUT

=043514901E 00
=0¢1485978E 00
041181381E 00
0+3802788E 00
0e5649213E 00
0e6152744E 00
045080646E CU
0+2626033E 00
-0¢6217347E=01
-043828688E 00
-046146804E 00
~046950833E 00
-0e6010847E 00
=043556196E 00
~042175848E-01
043139244E 00
045648551E 00
0+6683750E 00
046026798E 00
043914806E 00
049553805E=01
-042054478E 00
~044349084E 00
~045396085E 00
-045028978E 00
-0¢3473235E Q0
~041256373E 00
049682514E=01
0e2621591E 00
043356144E 00
043127672E 00
0e2172432E 00
0+9059381E~01
~042251394E=01
-048934363E=01
~0¢9927360E-01
-046530841E=01
~041659110E=01
041457962E=01
065923016E=02




10.

11.

12.

13.

1ih.

15.

16.

17.

18.
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APPENDIX A

CONSTRAINTS

In order to develop constraints on the weights hk such that
the recovered transfer function H has an exact fit at some specified
frequency T we need to consider two separate cases. The first is

N
when H is of the form H(r) = h + 2Zhncos 2xnr, r = %— = 2:f .
=1 s s
N
The second is when H(r) is of the form H(r) = 2iZhnsin ennr.
n=1
A.1 Constraints at one point
N
Case I. Suppose H(r) = Ho + QZﬁncos 2nnr,
n=1
then
N
H'(r) = -hnZnﬂnsin 2nnr.
n=1
We wish to impose the following constraints:
HT) = K(T),
H(T) = F(¥),
i.e.,
N
h + ZEanos 2nor - F(F) = 0,
n=1

* This is a reprint of Appendix A of NASA CR-136. The symbol r is
used here to denote the frequency ratio f/fs. Also, the symbol F

is used here to denote a function of r.
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N
by Znﬁnsin 2xnxr + F'(F) = 0.
n=1

In order to minimige the error between H and H under the above con-
straints we define
1

2 N
R = f [B(r) - H(r)]ed.r + afbx Zainsin 2nan¥ + F'(T)].
0

n=1
Since
N
Ho = NF) - 2Zanos onn¥,
1 n=1
2 N N
R = f[F(?) + 22ﬁn( cos 2nxnr - cos 2nnT) - ho - 2Zhncos 2:mr]2dr
(0] n=1 n=1
N
+ afbx Znﬁnsm 2nn¥ + F'(F) 1.
n=1
1
2 N N
o] -
a—E—- = Rf[i‘('f) + QZhn(cos 2nnr - cos 2an¥) - h - EZhncos 2nnr]
hk 0 n=1 n=1
[cos 2xkr - cos 2nkF¥ldr + c[lrxksin 2nk¥].
Let 22 -0, k=1, .. .,N, then
o by
= N
h
-1 F(Tr)cos 2xk¥F + }3 + ) h_cos 2nnT cos 21kF + —cos 2xkT - h—k
2 2 n 2 2
n=1
= - a[nksin 2nkT]
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N .
%(ik-hk) + [Zﬂncos 2nn¥ - %ﬂ]cos 2nkr

n=1
hO
+ —5cos 21kT = - Q[nksin 2qak¥].
Let 6= (ho-ho), then
(Ek-hk) = & cos 2nkT - 20[rxksin 2xk¥]. (A.1)

Multiply (A.1) by (2 cos 2xk¥). Summing from 1 to N gives

N N N
2Z(Ek-hk)cos 25kT = 262c052 OnkT ~ lsaz:tkcos 25kT sin 2qkT,
k=1 k=1 k=1
adding (Ho—ho) to both sides gives
N
(ho-ho) + 2Z(hk-hk)cos 2nkT
k=1
N N
= 842 Gzcos2 27kr - MZﬂkcos 2nkT sin 2nkr.
k=1 k=1

Let
N
A = h + QZh cos 2nnt - F(¥).
(o] n
n=1
Hence
NI
A = (ho-ho) + 2Z(hn-hn)cos onnT,
n=1
so

N N
Al = Llaz:mcos oxn¥ sin 27T - § - E‘E)Z:cos2 2nnT.
n=1

n=1
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.

Now multiply (A.1l) by 2ksin 2xkT. Summing from 1 to N gives

N N N
2Zk(-ﬁk-bk)sin 2nkF = 2 6 zkcos 21kT sin 2nkT ~ L& ﬂkesin22nk1’-
k=1 k=1 k=1
Let
N
A, = ~hx Znhnsin 2xnT -~ F'(r).
n=1
Hence
N
A, = bn Zn(ﬂn-hn) sin 2nnT.
n=1
So
N N
A, = bx § chos onkF sin 2xkF - Bxiar Zke'sina.?nkf.
k=1 k=1
N
Let Ql =2 Zcosezstk'f,
k=1
N
Qe = Lx chos 2nkT sin 2xnkT,
k=1
N
Q3 = 8r° Zkesinz.?nki"-
k=
Then
& =0 - (198
and

A ="Q3a+Q25 .
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Solving we find that

8

a

235
Q:-(1+Q1)Q3

A Q#0,(14Q)) ]
Q,g-(1+Ql)Q3

Therefore the constrained weights are

h
o

P

hk + & cos 2xkr - o2xksin 2xk¥, k > 1,

where § and @ are as defined in (A.2) and (A.3).

Case II.

then

N
Suppose H(r) = 2i Zﬁnsin onnr,
n=1
N
H'(r) = bxi Znﬁncos 2nnr.
=1

We wish to impose the following constraints

i.e.,

and

H(T) = N7T),
H'(F) = F'(T),

N F(T)
2nZlhnsm 2nn¥ - =0,
N

— t{¥
1Hr§:nhncos 2nxnt - E;éﬁl = Q.

n=1
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In order to minimize the error between H and H under the above

conditions we define

1
2 N
-— 2 o~ - Fv('i.")
= [ {H(r) ~ H(r)] ar + afsx Znhncos 2rnF - — 1.
0 =1
Since
G
T = —
- 2 h,nsin ennt
Hl = n=2 — ,
2sin 2xT
1
2 N N
R =f[ =24 2ﬂf_ [Fgr) - ZZﬁnsin 2nnr] + EZHnsin 2xnr
0 sin 2nr n=> b
o N
-2 ZhnSin 2nnr] dr + ofhx Znﬁncos onnr - —inil]
n=1 =1
1
2 N N
e R f[Sin 2nr F(ir) - 2Z'ﬁnsin 2nn¥) + 2XHns1n 2xnr
o hy o s&in 2ar o 5

N
-2 Zh sin annr]['ESln enr sin 2mkr + 2sin 2rkrldr + Yokcos 2rkrT.
n=1 sin 2xr

Now fsm 2xr (Ex) 2ZI_lnsin 2nnr](sin emkr - Si0 2xr sin onkr) ..

sin 2xr sin 2rT
n=2

N
=_F§r2 sin2:tkr+sin2mkr T sin oxn¥
i . 2 o = . Cp — n
sin~ 2nr 2sin 2nY n=p
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1
2 N
- . in 2 in 2xkT¥ -
Alsof Ehn-hn]sin 2xnr[sin 2nkr - 2 Ir 510 N6y = i—'[hk-hk],
0 r=b sin 2xx
1
2 h
f[h sin? pp] SN 2HUT o 1 sin 2uF
5 1 sin 2nT sin 2xr
Hence
N
'L]f [QZE sin oanF - Fgr)] s1n 2nkr [hk'hk] + 4 1 sin 2nk¥
= n s1n Enr sin onr
= - %tkcos 2nkT
s1n 2nTk —
(hl l) + (hk }H:) = - amkcos 2nwkT.
sin 2nr
Let § = hl 1 then
Ek-h = § sin 2nrk | yiiccos 2nkF. (A.4)
k sin 2xr

Multiplying (A.4t) by 2sin 2#kT and summing from 2 to N gives

N N
2Z(kakhin OxkF = 26 ZM
k=

- - aezk cos 2nkF sin 2nkT.
K= sin 2nr Kk=p

Adding 2(El-hl) sin 21T to both sides yields

N N

5 N
= - _ sin_ 2nkT
2Z(hk-hk)sin 21kT = 26 k% ————

= -20 chos 27kr sin 2nkT.
=1 sin 2nr k=2

N
Let A = 2thsin 2nkr - F(T).

k=1
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Since
N
F(r) = 2zi1_ksin 2nkT,
k=1
N
A = 2Z(hk-ik)sin OkF,
or k=1
N N .
A = mchos 2nkT sin 2akT ~ 2 8 2 sin  2xk 2"1:1‘ .
k=2 k= 6&in 2nr

Multiplying (A.%) by bskcos 2nkT and summing from 2 to N gives

N N N
Lx Z(_hk-hk)kcos 2nkT = Lrd Zk'in kT c0s 26T g 2iCoos?
k=1 k=1 sin 2xnr =

adding lm(ﬁl—hl)cos 2xT to both sides of the above equation gives

N N N

bn Z (Ek-hk)kcos OnkT = Lnd kas 2aKT sin ok )\ 22 2

k=1 k=1 sin 2nr k=

N
Let o, = hn Zkhkcos 2nkT - F'(T).

k=1
N
Since F'(¥) = lx Zkﬁkcos 21kT.
k=1
N
A, = lixc Z(hk-i_fk)kcos 2rnkr.
k=1
Hence
N N
k - * —
Ag = bxné Z cos_2skr -s::m 2nky ha:tEZkzcosz 2rkT.
k=1 sin 2nr K=
181
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Let
N 5 -
sin” 2xk¥
Ql =2 ) ———————,
k=1 sin 2nr
N
Q,2 = EZKcos 2nkY sin 2xkT,
k=1
ar
Q3 = Q2
sin 2nr
N
Ql; = lme Zkgcos2 2rKkT.
k=1
Then
A = Ot(Q,2 - cos 2xT sin 2xr) - § %>
and

_ 2 2 _
A, = -a(Q,,_L-lm cos  2qF) + 6Q3-

Solving for 8 and @ we find that

A:L(Qh--lmecos2 2n1F) + AE(QE-cos 25T sin 2nT)

o}
Q3(Q2—cos 21T sin 2xTr) - QQ(Qh-lHtE cos2 25T)

59 - A%,

Q3(Q2-cos 25T sin 2rF) --Qz(Qu-lmzcosg onr))

a =

Therefore the constrained weights are

hy =hy +6

. 2"" _
S0 enrX | ok cos 2nkT, k > 2.

By = by 8

sin 2xr
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APPENDIX B

DETERMINATION OF DIGITAL FILTER WEIGHTS FOR A FILTER WHOSE GAIN

AND PHASE FUNCTIONS ARE GIVEN AT A FINITE NUMBER OF POINTS

The procedure discussed in Chapter IIT for obtaining the weights
of a digital filter assumes that the transfer function is given for all
values of the frequency f. In some applications, the values of H(f) =
A(f)exp(i®(f)) are known at only a finite number of points. In particular,
the known values are sometimes the values of A(f) and ®(f) at a finite
number of points on [O,fS/E] . In this case, the filter weights must
be determined by other means.

The method given here is a simple extension of harmonic analysis as
presented in most advanced engineering mathematics and numerical analysis
books to complex-valued functions.

Let H(f) be & complex-valued function which is periodic with period
f_, and suppose that the values of H(f) are known at M + 1 equally

spaced points on [-fs/2, fs/2] , say

fJ_ = _fs/2 + j(fS/M) s 3=0,1,2,. . .,M.

We wish to approximate H(f) by a finite trigonometric sum of the form
%

Z: b exp(2nnifj/fs) (B.1)

n=—Nl

where the hn are tp be chosen such that
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M % . 2
R = jzo [H(fJ.) - n=-Nlhn exp(Ennlfj/fS)] (B.2)

is a minimum. This, of course, is minimization in the least squares

sense. A necessary condition for R minimum is

3R '
T 0 (B.3)
for each k, -Nl <k< N2. For each k
N
M-1 2
oR . .
-Sh—k =2 J'Z=:o [H(fj) - =Z_:N h, exp(2n1r1fj/fs)] exp(2kﬁ1fj/fs)
1

+ N + 1 equations

. aR — B
Setting _55-1{ = 0 gives Nl >

M=1 Ng (B.L)
j;o H(fj) exp(2k:tifj/fs) - H=Z h exp(2(n+k)nifj/fs) =0
- 1
in Nl + N2 + 1 unknowns, the hn S.
From (B.Lh) we have
: (B.5)
M1 N M-1
Z H(f.) exp(2knif. /f ) - f [h Z exp(2(n+k)nif /T )]=0
j=0 Y g8 =N. P j=0 J s

1

For each n,
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M-1 M-1
3, e)@(2(n+k)n:ifj/fs) ), exp(2(n+i)mi{-£_f2+5(£_ M)} /2.)

j.-:o j=0

M-1 1
= jZ’o exp(2(n+k):ti(j/M-§ )

M- .
= Zl exp(2(n+k) jri/M) exp(-(n+k)wi)
§=0

I

( l)n+k. Mi;l .
- 2 exp(2(n+k)nji/M)
j=

for n = =k,
M-1 M1
E exp(2(n+k)nij/M) = zb 1 =M.
j:o j:

Suppose n ,l- ~k. Employing the identity

n i 1 - n+l

iZO =TT
M-1 M-1 .
Z exp(2(n+k)nji/M) = ) {exp(2(n+k)ni/M)}d
J=0 j=0

l-_{exp(E(n+k)1ti/M}M

1-exp(2(n+k)wi/M)
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l-exp(2(n+k)ni)

1-exp(2(n+k)wi/M)

l-cos 2(n+k)x -sin 2(n+tk)=n

1- exp(2(n+k)wi/M)

if (n+k)/M is not an integer. This condition is always satisfied if

M > ntk or synonymously if

M > max { Nl + N2, 2N 2N2} = max {2Nl, 2N} (B.6)

1’ 2

If condition (B.6) holds, then each of the equations (B.5) reduces to

M-1
ZD H(fj) exp(2kﬂ1fj/fs) Mh_ =0,
3=0
or
M-1
h, =1/M }20 H(f,)exp(2knif /2_)

Hence, replacing k by -k,

M-1

B M),

H(f . )exp(-2kxif /T ) (B.7)
LN J j' s

Note that condition (B.6) requires that the number of intervals of
equal length into which the period of H(f) is divided is greater than

twice the larger of the integers N. and Né, or synonymously, the number

1
M + 1 of equally spaced points is greater than or equal to

max {2Nl, 2N2}.
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The following discussion shows that the hn’s which give the least
squares minimization are those compubted by the trapezoidal rule from
the formula (3.37) for the Fourier coefficienmts of H(f). Equation (B.T)

can be written as

M-1
By = (1/M) [H(fo) exp(-2k:rifo/fs) + le H(fj) exp(—21mifj/fs)]
M-1
= (1/M) [ H(-fs/2) exp(kni) + El H(fj) exp(EMifj/fsﬂ (B.8)
J:
M-1
C (1/M)B%)H(-f3/2) exp(kxi) + Z H(fj) exp(-2kﬁifj/fs)
J=1

+ C%)H(fs/E) exp(-kﬂii]

The last equality of (B.8) is possible since H(-fs/z) = H(fS/Z)
and exp(kni) = exp(-kwi). !
By applying the trapizoidal rule to (3.37), we have
fs/2 _ .
1/1:‘S j H(F) exp(-2k.n:if/fs) arf = :
-f_/2

fS/M
(1/£ )4 = [H(-fS/Z) exp{(-2kni)(f_/2) /1)

M-1 f
+ 2 z H(-fs/2 + j—&-) exp{(-2k1ri)(-fs/2+j(fS/M))/fs}
Fr

(£ /2) exp{(-Ekﬂi)(fs/z)/fs{]
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2 I = :
= (A/M[G)B(-5 /2) exp(ni) + J;,11(3?3) exp(-2lerif /£)

+ (S)E(2_/2) exp(-kni)] (8.9)

which is identical to (B.8). Hence the coefficients for the least

squares minimization can be computed by applying the trapezoidal rule to

(3.37).

Writing H(f) in polar form, we have
H(f) = A(f) exp(i®(f))

where A(f) and ®(f) are real. These are called the gain and phase
functions, respectively, of the filter. In practice, the gain A(f)
and phase ®(f) are specified on [O,fS/E] . Now a necessary and sufficient

condition for the weights of a filter to be real is that
H(-f) = H¥(f)

where B*¥(f) denotes the complex conjugate of H(f). If A(f) is extended

such that it is an even function on [-fs/e,fs/Z ], then
H(-f) = A(-f) exp(i®(-f)) = A(f) exp(-i2(f)) = EX(f)

and the corresponding weights are real. The formula for the weights

can be written in a more useful form in this case. From (3.57),

we have
fs/2
h = 1/fs J’ H(T) exp(—2nnif/fs) ar
—fs/2
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4

0 £ /2
= 1/f, I H(T) exp(-emif/fs)dfu/fsj ° H(F) exp(-Bnnif/fs)df
-fs/2 o)
-fs/2 fs/z
= -l/fS J\ H(f) exp(-2nﬁif/fs)df + l/fS J‘ H(T) exp(-2nﬂif/fs)df
0 0
/2 /2

f f
= 1/fs jﬂ H(-T) exp(2rmif/fs)df + 1/fS J H(E) exp(-2rmif/fs)df
0 0

£ /2 £ /2
= 1/fS j H*(f) exp(2nnif/fs)df + 1/fS H(f) exp(-2nrrif/fs)df
0 0

/2

f
= 1/1:S IS [ H*(£) exp(—Enﬂif/fs) + H(f) exp(—Enﬁif/fs ) ar
0

£ /2
= 2/fS j Re[ H(T) exp(-zmif/fs)]df, where Re [ H(f) exp(-zmif/fs)]
0

denotes the real part of H(F) exp(-Enﬁif/fs).

Hence,

/2

iy
hn = 2/:1’:‘S j‘ Re[ A(f) exp(i®(f)) exp(-Znﬁif/fS)] ar
0

£ /2

= 2/fS Jrs Re[ A(f) exp(i@(f)-Emrif/fs)] ar
0
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fS/E
= 2/fs J‘ A(f) cos [2mtf/fs-<1)(f) ]4af : (B.10)
(0]

Now the hn's which give the least squares minimization may be
computed by applying the trapezoidal rule to (B.10)

Subdivide the closed interwal [O,fs/z] into N > M subintervals of

equal length, and let fj = j(fS/N), j=0,1,2,. . . ,N. Then iy - f5 =
fS/N, j=0,1, .. . ,N-1. By applying the trapezoidal rule to (B.10),
fs/2
J’ A(f) cos [2nﬁf/fs-®(f)] ar
0
N-1
=f /2N {A(0) cos®(0) + 2 Z) A(f.) cos [2naf /f -0(F.) ]+
s £ i's J

A(fs/z) cos [nzr—@(fs/E’)] }

So that

fs/2
2/fS Jﬁ A(F) cos [2nﬁf/fs - o(f) lar

=g
]
o

(B.11)

N-1
1/N {A(0) cos®(D) + 2 jza A(fj) cos [Ennfj/fs - @(fj) 1+

A(fS/E) cos [ nx -Q(fS/Q) ]}
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The function ®(f) is odd, and hence we must have ®(0) = O. Using

this and applying a trigonometric identity to the last term, we have

N-1
h = (1/M) (A(0) + 2 j;‘l A(fj) cos[2mtfj/fs - @(fj) ]

+ (_1)n(fs/2) cos (@(fS/Q))}

This yields the weights to be used in (3.41) to give the out-

put of a digital filter which approximates the original filter.
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APFENDIX C

DETERMINATION OF FREQUENCY CHARACTERISTICS IN SAMPLED DATA

By

Edward B. Anders

Given a set of tabulated data which is periodi¢c and admits a
finite trigonometric expansion, one may determine the frequencies
present in the data and the coefficients of these frequency components
by using the following theorems. The procedure is extremely simple
and is based on a simple numerical integration procedure--the

trapezoidal rule.

Theorem 1: Let

[=<]

2n . 2n
h(t) = a_ + gzl(an cos fsnt + b sin ?gnt) (C.1)

where f_ is the fundamental period of h(t). If h(t) is sampled at
T T

the N + 1 equally spaced points of [- —%, —g ] including the end points,
then
- o)
N(aO + Z) aBN)’ N even
N, B=1
1 fs 2 T 1 fs
S =
(- —2) + Y n(ER) + Z(D) = (c.2)
P=- =+1 )
2 B
Na + ), (-1)Pa_ ), N odd
o A=l BN
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: . £ :
Note: Z; means k=B, B+1, . , P+n where B+n < €, B4n+l > €.
k=B
Proof: Since sin x is odd, all terms of (C.l) containing sin.%ﬂnt
: : ]
vanish. Thus, we are concerned only with terms containing cos%ﬂnt,
]
n=0,1,. . . . If N is even, then P is an integer and for integral

B, we obtain

2 s
a,. COS ?—BN(E—P) = a

BN s BN

If N is odd, P is an odd multiple of %, say P

integral B, we obtain

251 S
8gNCOS ?;BN(E—P) = a

cos nPm

BN

To complete the proof we must consider two

I) When N is even, n £ BN, p=0,1,
II) When N is odd and n # BN, B=0,1,
£ f
Case I: Consider the set of points O, -’ 2 —%,

cos 2nBP = a

BN

m(%), m odd, and for

(-1)BaBN

cases:

N fs

Substituting these g + 1 points into a term of (C.l) where n % BN,

B=0,1, .

% and adding we obtain

T
la cos gj-t-n(O) + a 22 cos Sl 4+ 4 a
2 n fs no oy b i) N 2 n
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T
S

cos 2x -2 cos )
fs N 2

1
o
5
—~
(ST I
+
B
il ol
e

sin(F+5) 22
=a(—-———-—-.-2-cos nn)

n
2 sin 1
N

. I . nn
S1ln . COoSs -T\T + cos wn Sin '—N

1
= an( - Scos nn) = O.

2 s:'_nﬁ—i:\lI

T b T
ints -]; _.E
poin > N’

VY OV
role

Case II: Consider the N+ 1

=
2 N

S
_N., . . . )
Substituting as in Case I but multiplying only the last by

% and adding we obtain, for n £ BN, B = 0,1,. . . ,

N
2 o k1 fs
an Zl cos -f—n—N-P + Ea cos mn
P== S
2
N-1
1 nn 1 2 2nn 1
=an(-§+ E cos ~pm - 5 - Z cos —m - 3 COS )
=1 m=1
, l.nn
Sln(N-‘E)_N sin mn 1
=a ( - = cos wn)
- P 2 sin X8 2
2N N
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. n . n
Sin wn COS —— + COS 7 Sin —=

=a_ ( 2N CL 7n)
B 2 sin 22 2
2N

Since the cosine function is even, the theorem is proved.

Theorem 2: If h(t) is as in Theorem 1, using N + 1 equally spaced

f T iy T
points of the interval [- —% + Eﬁ’ —; + Eﬁ] including the end points

of the interval, then

N
< hG?s + fS) + E%; h(fEP + fs) + Eh(-f-.E + fS) (C.3)
2 "2 1IN . N T In TN 2 TIN :
P=—=+1
2
- o g s B2 ¢
2 2
N[a_ + (-1) a + (-1) o] > (1) real, N even,
£Z=:l PN B;L BN
= é o L= ® j=a
N[a_ + Z (-1)2 asy t Z (-1) 2y N 1, (-l)ereal, N odd.
L ° el : p=1 P

f =) f f
. S 215 s . 2n s
Proof': h(t+ﬂﬁ) a_ + ;ZA [ancos E;n(t+ﬂﬁ) + bn51n.?;n(t+nﬁx

a [==]
0 2n nn . 2% . mn
==+ Z) [an(cos 7Ot cos 5% - sin z-nt sin 55 ) (c.b)
n=1 s S
. en nn 27 . 7n
+ bn(31n fsnt cos 5% + cos-fgnt 51n.§ﬁ)]
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When n=pN, B=0,1, .

; N even, we obtain

2 fs fs
aBNcos 7 BN(-—N'P'*W)

aBN

2

(cos 2aBP cos BE - sin 24BP sin Bg)

0 , B odd

, B even

and
21 fs fs
bBN Sln'§;ﬁN(—ﬁP+ﬂﬁ)
= bBN(

When n=pN, p=0,1,

we obtain

27 N(fi fs)
%aN cosfsB TR

and

sin 2nBP cos Bg + sin B% cos 2nBP)
o) , B even
g-1
(-1) ¢ 1 B odd.
BN’

. . ,N, N odd, then P = m(%), m odd, and

R



n

Again, to coﬁplete thé proof there are two cases. These cases are
as in Theorem 1. In eithef case, since sin x is an odd function, those
terms of the last member of (C.4) containing sin.%ﬂnt vanish. Since the
other two terms contain oniy one factor which depeids on t, namely cos %ﬂﬁt,
we show as in Theorem 1 that they vanish when n # BN, B=0,1, . . . °
Thus, if given a set of data which represents a band-limited function
or a function which can be considered as band-limited by assuming all

coefficients for n > N to be insignificant, we can determine all coefficients

by use of the above two theorems. If

h(t) =a + SE'(a cos gznt + b sin Eﬂnt),
o} n bl n T
n=1 s s

we can find ao by using any number of equally spaced points greater than

N + 1. For simplicity, we illustrate with N + 2 points. Thus,

N+l_l
T 2 bl bl ol
ih(----E) + n(—=P) + ;h(—i) = (N+1l)(a + a ).
2 2 P;Zl N+1 N N 2 2 o ééé B(N+l)

Since an = O for n > N, we obtain (N+l)ao. To minimize the number of
points required one usually uses a number such as 2N rather than N+2.
The remaining coefficients can be found one by one beginning with N+1
points and dropping one point each time. It is recommended that the as,

i=0,1,.. . .,N be calculated first and then the bi’ i=1,2,. . .,N.

f
Due to the assumed periodicity, the shift of Eﬁ will not require
f r
going outside of [- —%,—%] for points. We must only be careful as to

which points will use % as weights.
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“The acronautical and space activities of the United States shall be
conducted so as to coniribute . . . to the expansion of human knowl-
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